【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)且).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(2)若點在直線上,點在曲線上,求證:.
【答案】(1),;(2)證明見解析.
【解析】
(1)先將直線的參數(shù)方程化為普通方程,再將直線的普通方程轉(zhuǎn)化為極坐標(biāo)方程,利用可將曲線的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)設(shè)點的坐標(biāo)為,利用點到直線的距離公式以及三角函數(shù)的有界性可證明出.
(1)在直線的參數(shù)方程(為參數(shù)且)中消去參數(shù)得,所以,直線的極坐標(biāo)方程為.
曲線的極坐標(biāo)方程為,即,即,
轉(zhuǎn)化為直角坐標(biāo)方程為,即;
(2)曲線的參數(shù)方程為(為參數(shù)),
設(shè)點的坐標(biāo)為,則點到直線的距離為,
因此,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學(xué)們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最大值;
(2)若函數(shù)與有相同極值點.
①求實數(shù)的值;
②若對于(為自然對數(shù)的底數(shù)),不等式恒成立,
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,設(shè).
(Ⅰ)若在處取得極值,且,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若時函數(shù)有兩個不同的零點、.
①求的取值范圍;②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的極值點;
(2)設(shè)函數(shù)有兩個零點,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左焦點為,且點在C上.
求C的方程;
設(shè)點P關(guān)于x軸的對稱點為點不經(jīng)過P點且斜率為k的直線l與C交于A,B兩點,直線PA,PB分別與x軸交于點M,N,若,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面外ABC的一點P,AP、AB、AC兩兩互相垂直,過AC的中點D做ED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體B﹣PADE的體積是;
(1)畫出面PBE與面ABC的交線,說明理由;
(2)求面PBE與面ABC所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和都是等差數(shù)列,.數(shù)列滿足.
(1)求的通項公式;
(2)證明:是等比數(shù)列;
(3)是否存在首項為1,公比為q的等比數(shù)列,使得對任意,都有成立?若存在,求出q的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com