11.觀察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,則第n個式子是( 。
A.n+(n+1)+(n+2)+…+(2n-1)=n2B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

分析 觀察所給的等式,右邊是奇數(shù)的平方,左邊是連續(xù)的整數(shù)的和,問題得以解決.

解答 解:∵1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72
…,
∴n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2
故選:C.

點評 本題考查了歸納推理的問題,關(guān)鍵找到規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的表面積為(  )
A.$\frac{4\sqrt{5}π+4π}{3}$B.$\frac{2\sqrt{5}π+4π}{3}$C.$\frac{12+4\sqrt{5}π+4π}{3}$D.$\frac{24+4\sqrt{5}π+4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程.
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1•Sn(n∈N*).
(1)試求a1之值,并確定數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{(lo{g}_{2}{a}_{n+1})•(lo{g}_{2}{a}_{n+2})}$,n∈N*,試求{bn}前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.今年NBA總決賽在勇士和騎士隊之間進行.按照規(guī)則,要想獲得總冠軍的隊伍需要在七場比賽中獲勝四場(如果提前贏得比賽,則剩下的就不用繼續(xù);同時要注意的是,籃球比賽沒有平局,每場必須分出勝負).假設(shè)勇士隊每場比賽獲勝的概率是$\frac{1}{2}$,且各場比賽獲勝與否彼此獨立,用X表示勇士隊在整個比賽中的獲勝場數(shù),試回答以下問題:
(1)計算勇士隊至少獲勝一場的概率;
(2)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)非零實數(shù)a,b滿足a<b,則下列不等式中一定成立的是( 。
A.a+b>0B.a-b<0C.$\frac{1}{a}$>$\frac{1}$D.ab<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知(2x+1)9=a0+a1x+a2x2+…+a9x9,其中a0,a1,a2,…,a9為常數(shù),x∈R,則a0+a1+a2+…+a9=19683;(a1+3a3+5a5+…)2-(2a2+4a4+6a6+…)2=2125764.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\\{\;}\end{array}\right.$(t為參數(shù),0≤α<π),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,圓C的極坐標方程ρ=-4cosθ,圓C的圓心到直線l的距離為$\frac{3}{2}$.
(Ⅰ)求α的值;
(Ⅱ)已知P(1,0),若直線l于圓C交于A、B兩點,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x≤1\\-{x^2}+2mx-2m+1,x>1\end{array}$,且對于任意實數(shù)a∈(0,1)關(guān)于x的方程f(x)-a=0都有四個不相等的實根x1,x2,x3,x4,則x1+x2+x3+x4的取值范圍是(  )
A.(2,4]B.(-∞,0]∪[4,+∞)C.[4,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案