19.已知a=2log20.3,b=20.1,c=0.21.3,則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=2log20.3<0,b=20.1>1,c=0.21.3∈(0,1),
∴b>c>a.
故選:D.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑為20mm,中間有邊長為5mm的正方形小孔,隨機(jī)向銅錢上滴一滴油(油滴大小忽略不計(jì)),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐S-ABCD中,底面ABCD是邊長為4的正方形,平面SAD⊥平面SCD,$SA=SD=2\sqrt{2}$.
(1)求證:平面SAD⊥平面ABCD;
(2)E為線段DS上一點(diǎn),若二面角S-BC-E的平面角與二面角D-BC-E的平面角大小相等,求SE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知2a=3,log35=b,則log1520=$\frac{2+ab}{a+ab}$(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_3}x,(x>0)}\\{{3^x},(x≤0)}\end{array}}$若f(a)=$\frac{1}{3}$,則實(shí)數(shù)a的值為-1或$\root{3}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=4x2-kx-8,x∈[5,20]
(Ⅰ)若函數(shù)f(x)在[5,20]上具有單調(diào)性,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若函數(shù)f(x)在[5,20]上恒大于零,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(3)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e-2<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“直線與拋物線相切”是“直線與拋物線只有一個(gè)公共點(diǎn)”的(  )條件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是m≥2.

查看答案和解析>>

同步練習(xí)冊(cè)答案