18.已知集合A={x||x|<1},B={x|x2-2x>0},則A∩(∁RB)等于( 。
A.(-1,0]B.(-1,0)C.[0,1)D.(0,1)

分析 分別求出A與B中不等式的解集,確定出A與B,根據(jù)全集R求出B的補集,找出A與B補集的交集即可.

解答 解:集合A中的不等式變形得:|x|<1,
解得:-1<x<1,即A=(-1,1);
集合B中的不等式解得:x<0或x>2,
即B=(-∞,0)∪(2,+∞)
∵全集為R,
∴∁RB=[0,2]
則A∩(∁RB)=[0,1).
故選:C.

點評 此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.條件p:-2<x<4,條件q:(x+2)(x-a)<0,若p是q的充分不必要條件,則a的取值范圍是( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足:a4=7,a10=19,其前n項和為Sn
(1)求數(shù)列{an}的通項公式an及Sn;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等差數(shù)列{an}滿足a2=3,Sn-Sn-3=48(n>3),Sn=57,則n的值為( 。
A.5B.6C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間x∈[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知角α始邊與x軸的正半軸重合,終邊在直線2x+y=0上,則sin2α=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)6-5i,-2+3i對應(yīng)的點分別為A、B,若C為線段AB的中點,則點C對應(yīng)的復(fù)數(shù)是(  )
A.4+8iB.8+2iC.2-iD.4+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=2x+b,x∈R}.
(1)若A∩B=[0,4],求m的值;
(2)若A∩C=∅,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD是正三角形,平面PAD⊥底面ABCD.
(1)求直線PC與平面PBD所成角的正弦值;
(2)求二面角A-PD-B的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案