【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學業(yè)成績對學生進行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名.其評估成績近似的服從正態(tài)分布.現(xiàn)隨機抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進行了分組,繪制了如下頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若學校規(guī)定評估成績超過82.7分的畢業(yè)生可參加三家公司的面試.
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值.請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
附:若隨機變量,則,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)過點存在幾條直線與曲線相切,并說明理由;
(3)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的兩個頂點的坐標分別為,,且所在直線的斜率之積等于,記頂點的軌跡為.
(Ⅰ)求頂點的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點,點在曲線上,且為的重心(為坐標原點),求證:的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,小王同學發(fā)現(xiàn),每個國家在疫情發(fā)生的初期,由于認識不足和措施不到位,感染人數(shù)都會出現(xiàn)快速的增長.下表是小王同學記錄的某國連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).
日期代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累計確診人數(shù) | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
為了分析該國累計感染人數(shù)的變化趨勢,小王同學分別用兩種模型:①,②對變量和的關(guān)系進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,殘差圖如下(注:殘差):經(jīng)過計算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個模型?并簡要說明理由;
(2)根據(jù)(1)問選定的模型求出相應(yīng)的回歸方程(系數(shù)均保留一位小數(shù));
(3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數(shù)尚未公布.小王同學認為,如果防疫形勢沒有得到明顯改善,在數(shù)據(jù)公布之前可以根據(jù)他在(2)問求出的回歸方程來對感染人數(shù)作出預(yù)測,那么估計該地區(qū)第9天新型冠狀病毒感染確診的累計人數(shù)是多少.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在下列三個正方體中,均為所在棱的中點,過作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com