函數(shù)(其中)的圖象如圖所示,把函數(shù)的圖像向右平移個單位,再向下平移1個單位,得到函數(shù)的圖像.
(1)若直線與函數(shù)圖像在時有兩個公共點(diǎn),其橫坐標(biāo)分別為,求的值;
(2)已知內(nèi)角的對邊分別為,且.若向量與共線,求的值.
(1);(2)
解析試題分析:本題主要考查三角函數(shù)的圖像和性質(zhì),向量共線的充要條件以及解三角形中正弦定理余弦定理的應(yīng)用,考查分析問題解決問題的能力和計(jì)算能力,考查數(shù)形結(jié)合思想和化歸與轉(zhuǎn)化思想.第一問,先由函數(shù)圖像確定函數(shù)解析式,再通過函數(shù)圖像的平移變換得到的解析式,由于與在上有2個公共點(diǎn),根據(jù)函數(shù)圖像的對稱性得到2個交點(diǎn)的橫坐標(biāo)的中點(diǎn)為,所以得出函數(shù)值;第二問,先用在中解出角的值,再利用兩向量共線的充要條件得到,從而利用正弦定理得出,最后利用余弦定理列出方程解出邊的長.
試題解析:(1)由函數(shù)的圖象,,得,
又,所以 2分
由圖像變換,得 4分
由函數(shù)圖像的對稱性,有 6分
(Ⅱ)∵ , 即
∵ ,,
∴ ,∴ . 7分
∵ 共線,∴ .
由正弦定理 , 得 ① 9分
∵ ,由余弦定理,得, ② 11分
解方程組①②,得. 12分
考點(diǎn):1.函數(shù)圖像的平移變換;2.函數(shù)圖像的對稱性;3.正弦定理和余弦定理;4.函數(shù)的周期性;5.兩向量共線的充要條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)請用“五點(diǎn)法”畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖(先在所給的表格中填上所需的數(shù)值,再畫圖);
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)時,求函數(shù)的最大值和最小值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于的方程在區(qū)間上有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
行列式按第一列展開得,記函數(shù),且的最大值是.
(1)求;
(2)將函數(shù)的圖像向左平移個單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)擴(kuò)大為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求在上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com