已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點P 為橢圓上一點,直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點P作橢圓的切線交直線于點A,試判斷線段AP為直徑的圓是否恒過定點,若是,求出定點坐標(biāo);若不是,請說明理由.
(1) ;(2) 直線l與橢圓相切;(3)
【解析】
試題分析:(1)直線是拋物線的一條切線.所以將直線代入拋物線方程,即,得出的值,利用,橢圓中,依次解出,從而解出方程;
(2)直線與橢圓方程聯(lián)立,注意用到平方相減消,得到關(guān)于的方程,求其,利用點在橢圓上的條件,判定直線與橢圓的位置關(guān)系;
(3)首先取兩種特殊情形:切點分別在短軸兩端點時,求其切線方程,并求他們的交點,交點有可能是恒過的定點,如果是圓上恒過的定點,如果是則需滿足,,從而判定所求交點是否是真正的定點.此題屬于較難習(xí)題.
試題解析:(1)因為直線是拋物線的一條切線,所以,
即 2分
又,所以,
所以橢圓的方程是. 4分
(2)由得
由①2+②得
∴直線l與橢圓相切 9分
(3)首先取兩種特殊情形:切點分別在短軸兩端點時,
求得兩圓的方程為
,
兩圓相交于點(,0),(,0),
若定點為橢圓的右焦點(.
則需證:.
設(shè)點,則橢圓過點P的切線方程是,
所以點
,
所以. 11分
若定點為,
則,不滿足題意.
綜上,以線段AP為直徑的圓恒過定點(,0). 14分
考點:1.橢圓的性質(zhì)與方程;2.直線與圓錐曲線相交時的綜合問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)有兩個極值點,且,,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知等比數(shù)列的公比為2,前4項的和是1,則前8項的和為( )
A.23 B.21 C.19 D.17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知展開式各項的系數(shù)和比各項的二次式系數(shù)和大992,則展開式中系數(shù)最大的項是第 項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)在()上單調(diào)遞增;,則p是q的( )
A.充要條件 B.充分不必要條件 C.必要不充分條件 D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
觀察如圖三角形數(shù)陣,則
(1)若記第n行的第m個數(shù)為,則 .
(2)第行的第2個數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)記為,若對于任意實數(shù)x,有,且為奇函數(shù),則不等式的解集為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知是⊙的切線,是切點,直線交⊙于兩點,是的中點,連接并延長交⊙于點,若,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(二)理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)的三內(nèi)角所對的邊長分別為,且,A=,.
(1)求三角形ABC的面積;
(2)求的值及中內(nèi)角B,C的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com