【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,首項a1=1,且a1 , a2 , a4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=an+2 ,求數(shù)列{bn}的前n項和Tn .
【答案】解:(Ⅰ)設數(shù)列{an}的公差為d,由題設, , 即(1+d)2=1+3d,解得d=0或d=1
又∵d≠0,∴d=1,可以求得an=n
(Ⅱ)由(Ⅰ)得 ,
=(1+2+3+…+n)+(2+22+…+2n)=
【解析】(I)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.(II)利用等差數(shù)列與等比數(shù)的求和公式即可得出.
【考點精析】關于本題考查的數(shù)列的前n項和和數(shù)列的通項公式,需要了解數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為
(1)當時,判斷直線與圓的關系;
(2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 : 過點的直線交拋物線于兩點,設
(1)若點 關于軸的對稱點為,求證:直線經(jīng)過拋物線 的焦點;
(2)若求當最大時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學之間的關系,在高中生中隨機地抽取了90名學生調查,得到了如下列聯(lián)表:
喜歡數(shù)學 | 不喜歡數(shù)學 | 總計 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計 | ③ | ④ | 90 |
(1)求①②③④處分別對應的值;
(2)能有多大把握認為“高中生的性別與喜歡數(shù)學”有關?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)同時滿足:①對于定義域上的任意,恒有;②對于定義域上的任意.當,恒有.則稱函數(shù)為“理想函數(shù)”,則下列三個函數(shù)中:
(1),
(2),
(3).
稱為“理想函數(shù)”的有 (填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系xOy中,直線l:y=x,圓C: (φ為參數(shù)),以坐標原點為為極點,x軸的正半軸為極軸建立極坐標系. (Ⅰ)求直線l與圓C的極坐標方程;
(Ⅱ)設直線l與圓C的交點為M,N,求△CMN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的“中值點”.
下列函數(shù):①;②;③;④中,在區(qū)間[0,1]上“中值點”多于一個的函數(shù)序號為_________.(寫出所有滿足條件的函數(shù)的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:
根據(jù)以上數(shù)據(jù),繪制了散點圖.
(1)根據(jù)散點圖判斷,在推廣期內, 與(均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結果及表中的數(shù)據(jù),建立關于的回歸方程,并預測活動推出第天使用掃碼支付的 人次;
(3)推廣期結束后,車隊對乘客的支付方式進行統(tǒng)計,結果如下
車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預計該車隊每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要年才能開始盈利,求的值.
參考數(shù)據(jù):
其中其中
參考公式:
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com