已知命題:“x∈R,都有不等式|2x-1|+|x+2|+2x-m2-2m+2≥0成立”是真命題,
(1)求實數(shù)m的取值集合B;
(2)設(shè)不等式(x+3a)(x-a+2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數(shù)a的取值范圍.
考點:函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)不等式恒成立,建立等價條件即可求實數(shù)m的取值集合B;
(2)根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:(1)命題:“?x∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命題,
得x2-x-m<0在-1≤x≤1恒成立,
∴m>(x2-x)max得m>2即B=(2,+∞).
(2)不等式(x-3a)(x-a-2)<0
①當(dāng)3a>2+a,即a>1時解集A=(2+a,3a),若x∈A是x∈B的充分不必要條件,
則A⊆B,∴2+a≥2此時a∈(1,+∞).
②當(dāng)3a=2+a,即a=1時解集A=φ,若x∈A是x∈B的充分不必要條件,則A?B成立.
③當(dāng)3a<2+a,即a<1時解集A=(3a,2+a),
若x∈A是x∈B的充分不必要條件,則A?B成立,
∴3a≥2此時a∈[
2
3
,1)

綜上①②③:a∈[
2
3
,+∞)
點評:本題主要考查不等式恒成立問題的求解以及充分條件和必要條件的應(yīng)用,注意要對參數(shù)進行分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在由三條直線x-y+2=0,x+y-4=0,x+2y+1=0圍成的三角形內(nèi)求一點,使其到三直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
.?dāng)?shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)令Tn=a1b1+a2b2+…+anbn,若對任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x2-1|的圖象與函數(shù)y=x+k的圖象交點恰為3個,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-3x+2+2lnx(a>0)
(1)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間,并指出在每個單調(diào)區(qū)間上是增函數(shù)還是減函數(shù);
(2)求實數(shù)a的取值范圍,使對任意的x∈[1,+∞),恒有f(x)≥0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

知函數(shù)f(x)=
(x-a)2(x≤0)
1
x
+x+a(x>0)
的最小值為f(0),則a的取值范圍是(  )
A、[-1,2]
B、[0,2]
C、[1,2]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某輪船航行過程中每小時的燃料費u與其速度v的立方成正比.已知當(dāng)速度為10千米/小時,燃料費10元/小時,其他與速度無關(guān)的費用每小時160元.設(shè)每千米航程成本為y.
(1)試用速度v表示輪船每千米航程成本y;
(2)輪船的速度為多少時,每千米航程成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),對任意的x∈R,滿足f(-x)+f(x)=0,f(2-x)=f(x),且當(dāng)x∈[0,1]時,f(x)=ax,若方程f(x)-lgx=0恰有五個實根,則實數(shù)a的取值范圍是( 。
A、(-lg11,-lg7)∪(2lg3,lg13)
B、(-2lg3,-lg7)∪(lg11,lg13)
C、(-lg13,-lg11)∪(lg7,2lg3)
D、(-lg13,-2lg3)∪(lg7,lg11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小正周期為2π的是( 。
A、y=cosx
B、y=sin(2x+π)
C、y=tanx
D、y=|sinx|

查看答案和解析>>

同步練習(xí)冊答案