13.過拋物線y2=2px的焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不確定

分析 設(shè)過A,B的坐標(biāo)為(x1,y1),(x2,y2),求出$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=$\frac{({y}_{1}{y}_{2})^{2}}{4{p}^{2}}$+y1y2=-$\frac{3}{4}{p}^{2}$<0,得到三角形的形狀.

解答 解:設(shè)過A,B的坐標(biāo)為(x1,y1),(x2,y2),
則$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=$\frac{({y}_{1}{y}_{2})^{2}}{4{p}^{2}}$+y1y2=-$\frac{3}{4}{p}^{2}$<0
∴三角形為鈍角三角形.
故選C

點(diǎn)評 本題考查三角形形狀的判定,具體涉及到拋物線、直線與拋物線的位置關(guān)系、向量等知識點(diǎn),解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對于實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x],下列命題中正確命題的序號②③⑤.
①函數(shù)f(x)的最大值為1;
②函數(shù)f(x)的最小值為0;
③方程f(x)-$\frac{1}{2}$=0有無數(shù)個解;
④函數(shù)f(x)是增函數(shù);
⑤對任意的x∈R,函數(shù)f(x)滿足f(x+1)=f(x);
⑥函數(shù)f(x)的圖象與函數(shù)g(x)=|lgx|的圖象的交點(diǎn)個數(shù)為10個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1>0,d<0,S4=S8,則Sn>0成立的最大自然數(shù)n為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,正三棱柱ABC-A1B1C1中,E是AC中點(diǎn).
(1)求證:平面BEC1⊥平面ACC1A1
(2)求證:AB1∥平面BEC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的兩個焦點(diǎn)為F1(-2,0)、F2(2,0)點(diǎn)P($\sqrt{3}$,1)在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2$\sqrt{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.偶函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(1+x),則在(-∞,0)上的函數(shù)解析式是(  )
A.f(x)=-x(1-x)B.f(x)=x(1+x)C.f(x)=-x(1+x)D.f(x)=x(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x-1-a,(a∈R);
(1)若f(x)有零點(diǎn),求實(shí)數(shù)a的取值范圍
(2)當(dāng)f(x)有零點(diǎn)時,討論f(x)有零點(diǎn)的個數(shù),并求出f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知0<x<$\frac{π}{2}$,sinx-cosx=$\frac{π}{4}$,存在a,b,c(a,b,c∈N*),使得(a-πb)tan2x-ctanx+(a-πb)=0,則2a+3b+c=( 。
A.50B.70C.110D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)計(jì)算:2lg4+lg$\frac{5}{8}+\sqrt{{{(\sqrt{3}-π)}^2}}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值.

查看答案和解析>>

同步練習(xí)冊答案