(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)在上是單調(diào)減函數(shù);
(3) 如果,求實數(shù)的取值范圍.
(1);(2)見解析;(3)
解析試題分析:(1) 是偶函數(shù)有即.…………4分
(2)由(1) . 設(shè), ………………6分
則. ……………………8分
.
在上是單調(diào)減函數(shù). ……………………10分
(3)由(2)得在上為減函數(shù),又是偶函數(shù),所以在上為單調(diào)增函數(shù). ……………………………………………12分
不等式即,4>.
解得. 所以實數(shù)的取值范圍是.…………………16分
說明(3)如果是分情況討論,知道分類給2分.并做對一部分則再給2分.
考點:函數(shù)的奇偶性;函數(shù)的單調(diào)性;利用函數(shù)的奇偶性和單調(diào)性解不等式。
點評:解這類不等式,關(guān)鍵是利用函數(shù)的奇偶性和它在定義域內(nèi)的單調(diào)性,去掉“f”符號,轉(zhuǎn)化為代數(shù)不等式組求解,但要特別注意函數(shù)定義域的作用。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(1)若,求函數(shù)在點(0,)處的切線方程;
(2)是否存在實數(shù),使得的極大值為3.若存在,求出值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),。
(1) 若,求函數(shù)的極值;
(2) 設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(3) 若在區(qū)間()上存在一點,使得成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知:
(1)用定義法證明函數(shù)是上的增函數(shù);
(2)是否存在實數(shù)使函數(shù)為奇函數(shù)?若存在,請求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)設(shè)函數(shù)
(1)證明函數(shù)是偶函數(shù);
(2)若方程有兩個根,試求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com