2.若函數(shù)y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$的圖象關(guān)于直線x=φ對(duì)稱,則x=φ可以為(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

分析 由三角函數(shù)恒等變換的應(yīng)用化簡函數(shù)解析式,利用正弦函數(shù)的對(duì)稱性,代入x的值函數(shù)取得最值,然后即可求得φ的值.

解答 解:∵y=$\sqrt{3}{sin^2}x+sinx•cosx-\frac{{\sqrt{3}}}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=sin(2x-$\frac{π}{3}$),
又∵圖象關(guān)于直線x=φ對(duì)稱,
∴f(φ)=sin(2×φ-$\frac{π}{3}$)=±1,可得:2×φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
解得:φ=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,可得當(dāng)k=0時(shí),x=φ=$\frac{5π}{12}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的對(duì)稱性,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2,3},B={2,3,6}定義運(yùn)算A?B=(x|x=ab,a∈A,b∈B)則A?B中所含元素的個(gè)數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a為實(shí)數(shù),函數(shù)f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范圍;
(2)求f(x)在R上的單調(diào)區(qū)間(無需使用定義嚴(yán)格證明,但必須有一定的推理過程);
(3)當(dāng)a>2時(shí),求函數(shù)g(x)=f(x)+|x|在R上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的導(dǎo)數(shù)
(1)y=3x(x2+2)
(2)y=$\frac{1}{{x}^{4}}$
(3)y=$\root{5}{{x}^{3}}$
(4)y=$\frac{cosx}{x}$  
(5)y=(2+x32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z滿足z=$\frac{2i}{1+\sqrt{3}i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)的虛部是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“%”運(yùn)算使(1,3)%[2,4]=(1,2),(2,5)%(4,5)=(2,4],則{1,2,3,4,5}%{1,3,5}%{2,4,6}=( 。
A.{1,2,3,4,5,6}B.C.{2,4}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知[x]表示不超過實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)y={x}的定義域?yàn)镽,值域?yàn)閇0,1];
③設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}\left\{x\right\}\begin{array}{l}{\;},{x≥0}\end{array}\\ f(x+1)\begin{array}{l}{\;},{x<0}\end{array}\end{array}$,則函數(shù)y=f(x)-$\frac{1}{4}$x-$\frac{1}{4}$的不同零點(diǎn)有3個(gè).
④{$\frac{2013}{2014}}$}+{${\frac{{{{2013}^2}}}{2014}}$}+{${\frac{{{{2013}^3}}}{2014}}$}+…+{${\frac{{{{2013}^{2014}}}}{2014}$}=1007.
其中正確命題的序號(hào)是①③④.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知y=f(x)是定義在[-1,1]上的偶函數(shù),與g(x)圖象關(guān)于x=1對(duì)稱,當(dāng)x∈[2,3]時(shí),g(x)=2a(x-2)-3(x-2)2,a為常數(shù),若f(x)的最大值為12,則a=( 。
A.3B.6C.6或$\frac{15}{2}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{24}}$=1(a>0,b>0)的左、右焦點(diǎn),過F1的直線l與雙曲線的左右兩支分別交于點(diǎn)B,A兩點(diǎn).若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.8B.8$\sqrt{2}$C.8$\sqrt{3}$D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案