【題目】如圖,設(shè)拋物線的公共點的橫坐標(biāo)為,過且與相切的直線交于另一點,過且與相切的直線交于另一點,記的面積.

(Ⅰ)求的值(用表示);

(Ⅱ)若,求的取值范圍.

注:若直線與拋物線有且只有一個公共點,且與拋物線的對稱軸不平行也不重合,則稱該直線與拋物線相切.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)將的橫坐標(biāo)為代入拋物線解析式可得,再代入拋物線解析式,化簡即可用表示的值.

(Ⅱ)設(shè)出點的坐標(biāo),結(jié)合M的坐標(biāo)即可表示出直線的方程.聯(lián)立拋物線,根據(jù)相切時判別式可得,表示出直線的方程.利用兩點式表示出直線的斜率,即可用表示出點的坐標(biāo).同理可求得點的坐標(biāo).進(jìn)而利用兩點間距離公式表示出,利用點到直線距離公式求得到直線的距離,即可表示出的面積.結(jié)合的取值范圍,即可求得的取值范圍.

(Ⅰ)因點在拋物線:,

又點在拋物線,,

(Ⅱ)設(shè)點,直線的方程為

聯(lián)立方程組消去,

因此

即直線的方程為

則直線的斜率

從而,

同理,直線的方程為,

因此

到直線的距離

的面積

因為

解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.

(1)求的直角坐標(biāo)方程和的直角坐標(biāo);

(2)設(shè)交于,兩點,線段的中點為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .

(1)證明: 上單調(diào)遞減;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識)進(jìn)行兩輪現(xiàn)場測試,并把兩輪測試成績的平均分作為該名學(xué)員的抽測成績.記錄的數(shù)據(jù)如下:

(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計這名學(xué)員抽測成績大于或等于90分的概率;

(2)根據(jù)規(guī)定,科目三和科目四測試成績均達(dá)到90分以上(含90)才算測試合格.

(i)從抽測的1號至5號學(xué)員中任取兩名學(xué)員,記為學(xué)員測試合格的人數(shù),求的分布列和數(shù)學(xué)期望 ;

(ii) 記抽取的10名學(xué)員科目三和科目四測試成績的方差分別為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左、右焦點為,,右支上的動點(非頂點),的內(nèi)心.當(dāng)變化時,的軌跡為(

A.直線的一部分B.橢圓的一部分

C.雙曲線的一部分D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號,很多手機(jī)用戶加入微信運(yùn)動后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運(yùn)動的積極性明顯增強(qiáng).微信運(yùn)動公眾號為了解用戶的一些情況,在微信運(yùn)動用戶中隨機(jī)抽取了100名用戶,統(tǒng)計了他們某一天的步數(shù),數(shù)據(jù)整理如下:

萬步

5

20

50

18

3

3

1

(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長方形的高;

(Ⅱ)若視頻率分布為概率分布,在微信運(yùn)動用戶中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬步的概率;

(Ⅲ)若視頻率分布為概率分布,在微信運(yùn)動用戶中隨機(jī)抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點,為棱上任意一點,且不與點、點重合.

1)求證:平面平面;

2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓E(ab0)的離心率為,且橢圓E的短軸的端點到焦點的距離等于2

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)己知AB分別為橢圓E的左、右頂點,過x軸上一點P(異于原點)作斜率為k(k0)的直線l與橢圓E相交于C,D兩點,且直線ACBD相交于點Q.①若k1,求線段CD中點橫坐標(biāo)的取值范圍;②判斷是否為定值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案