已知函數(shù)()
(1)當時,求曲線在處的切線方程;
(2)若在區(qū)間上函數(shù)的圖象恒在直線下方,求的取值范圍.
(1);(2)
解析試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)數(shù)的幾何意義知,利用直線的點斜式方程求切線方程;(2)由題意,不等式恒成立,對于恒成立問題可考慮參變分離,也可以構(gòu)造函數(shù)法,本題構(gòu)造函數(shù),等價于,故利用導(dǎo)數(shù)求函數(shù)的最大值,求的根,得或,討論根的大小并和定義域比較,同時要注意分子二次函數(shù)的開口方向,通過判斷函數(shù)大致圖像,從而求函數(shù)的最大值,進而列不等式求的取值范圍.
試題解析:(1)函數(shù)的定義域為.
當時,,,則,又切點為,故曲線在處的切線方程為.
(2)令定義域
在區(qū)間上,函數(shù)的圖象恒在直線下方,等價于在恒成立,即,,令,得或,
當時,,故在單調(diào)遞減,則,得;
當時,,當時,,單調(diào)遞減;當時,單調(diào)遞增,此時,故不可能,不合題意;
當時,在單調(diào)遞增,,故不可能,不合題意.
綜上:的取值范圍.
考點:1、導(dǎo)數(shù)的幾何意義;2、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;3、利用導(dǎo)數(shù)求函數(shù)的極值、最值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出,的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點的切線方程.
(2)當時,求最大實數(shù),使不等式對恒成立.
(3)證明當時,對任何,有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當時,求函數(shù)的最大值的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在其定義域上為增函數(shù),求的取值范圍;
(2)當時,函數(shù)在區(qū)間上存在極值,求的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)≈).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)圖像上一點處的切線方程為(1)求的值;(2)若方程在區(qū)間內(nèi)有兩個不等實根,求的取值范圍;(3)令如果的圖像與軸交于兩點,的中點為,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)..
(1)設(shè)曲線處的切線為,點(1,0)到直線l的距離為,求a的值;
(2)若對于任意實數(shù)恒成立,試確定的取值范圍;
(3)當是否存在實數(shù)處的切線與y軸垂直?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com