設(shè){an}為等比數(shù)列,Tn=na1+(n-1)a2+(n-1)a3+…+2an-1+an,已知T1=1,T2=4.

(Ⅰ)求數(shù)列{an}的首項和公比;

(Ⅱ)求數(shù)列{Tn}的通項公式.

答案:
解析:

  解:(Ⅰ)

  又為等數(shù)列,故

  (Ⅱ)

  

  、

  、

 、冢俚

  

  


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè){an}為等比數(shù)列,a1=1,a2=3.
(1)求最小的自然數(shù)n,使an≥2007;
(2)求和:T2n=
1
a1
-
2
a2
+
3
a3
-…-
2n
a2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}為等比數(shù)列,{bn}為等差數(shù)列,且b1=0,cn=an+bn,若數(shù)列{cn}是1,1,2,…,則{cn}的前10項和為
978
978

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}為等比數(shù)列,且其滿足:Sn=2n+a.
(1)求a的值及數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的通項公式為bn=-
nan
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}為等比數(shù)列,Tn=a1+2a2+…+(n-1)an-1+nan,已知an>0,a1=1,a2+a3=6.
(1)求數(shù)列{an}的公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){ an}為等比數(shù)列,{bn}為等差數(shù)列,且b1=0,cn=an+bn,若{ cn}是1,1,2,…,求數(shù)列{ cn}的前10項和.

查看答案和解析>>

同步練習冊答案