先后拋擲兩枚質(zhì)地均勻的正方體骰子(六個面分別標有數(shù)字1、2、3、4、5、6),拋擲第一枚骰子得到的點數(shù)記為x,拋擲第二枚骰子得到的點數(shù)記為y,構(gòu)成點P的坐標為(x,y).
(1)求點P落在直線y=x上的概率;
(2)求點P落在圓x2+y2=25外的概率.
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:(1)求出連續(xù)拋擲兩次骰子分別得到的點數(shù)x,y作為點P的坐標所得P點的總個數(shù),P落在直線y=x上的點的總個數(shù),即可求出概率;
(2)求出點P落在圓x2+y2=25外的個數(shù),代入古典概型計算公式即可求解.
解答: 解:連續(xù)拋擲兩次骰子分別得到的點數(shù)x,y作為點P的坐標所得P點有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共36個
(1)P落在直線y=x上的點有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).共6個.
∴點P落在直線y=x上的概率為
6
36
=
1
6
;
(2)落在圓x2+y2=25外的點有:
(1,5),(1,6),(2,5),(2,6),
(3,5),(3,6),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).共21個
故點P落在圓x2+y2=25外的概率P=
21
36
=
7
12
點評:古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗的意義以及每個基本事件的含義是解決問題的前提,正確把握各個事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計算滿足條件的基本事件個數(shù),及基本事件的總個數(shù),然后代入古典概型計算公式進行求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={a1,a2},B={b1,b2},C={c},a1,a2,b1,b2,c∈{1,2,3,4,5,6,7,8,9},且三個集合中的元素各不相同,現(xiàn)將a1、a2、b1、b2、c排成一個5位數(shù),則同一集合中的元素不相鄰的概率是( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C上任意一點P到兩定點F1(-1,0)與F2(1,0)的距離之和為4.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)曲線C與x軸負半軸交點為A,過點M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(B在M、C之間),N為BC中點.
(。┳C明:k•kON為定值;
(ⅱ)是否存在實數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個對數(shù)函數(shù):①y=lgx,②y=lg(-x),③y=lgx-2,④y=lg(-x)-lg2,則:
(1)對數(shù)函數(shù)①與②關(guān)于什么軸對稱?
(2)對數(shù)函數(shù)①經(jīng)過怎樣的變化得到③?
(3)對數(shù)函數(shù)②經(jīng)過怎樣的變化得到④?
(4)對數(shù)函數(shù)③④是否對稱?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(
x
2
-
1
x
6的展開式中,求:
(1)第5項的系數(shù);  
(2)常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求點P(-1,2)關(guān)于直線l:y=2x+1對稱的點Q的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1到6的六個數(shù)字中取兩個偶數(shù)和兩個奇數(shù)組成沒有重復(fù)數(shù)字的四位數(shù).試問:
(1)能組成多少個不同的四位數(shù)?
(2)四位數(shù)中,兩個偶數(shù)排在一起的有幾個?
(3)兩個偶數(shù)不相鄰的四位數(shù)有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx-1,a∈(0,4),b∈R.
(1)若b<0,且當x∈[-
1
a
,0]時,f(x)∈[-
3
a
,0],求a,b的值;
(2)是否存在實數(shù)a,b,使f(x)恰有一個零點x0∈(1,2),若存在,請給出一對實數(shù)a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一批救災(zāi)物資隨26輛汽車從某市以xkm/h的速度勻速開往400km處的災(zāi)區(qū).為安全起見,每兩輛汽車的前后間距不得小于(
x
20
2km.
(1設(shè)這批物資全部到達災(zāi)區(qū)最少用時為t小時,請將t表示為關(guān)于x的函數(shù);
(2)若這批物資全部到達災(zāi)區(qū),最少要多少小時?

查看答案和解析>>

同步練習冊答案