18.閱讀如圖所示的程序框圖,若輸入a=$\frac{17}{36}$,則輸出的k值是( 。
A.10B.11C.12D.13

分析 根據(jù)程序框圖的流程,計(jì)算運(yùn)行n次的結(jié)果,根據(jù)輸入a=$\frac{17}{36}$,判斷n滿足的條件,從而求出輸出的k值

解答 解:由程序框圖知第一次運(yùn)行s=0+$\frac{1}{1×3}$,k=2;
第二次運(yùn)行s=0+$\frac{1}{1×3}+\frac{1}{3×5}$,k=3;

∴第n次運(yùn)行s=0+$\frac{1}{1×3}+\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$×(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
當(dāng)輸入a=$\frac{17}{36}$時(shí),由n>a得n>8.5,程序運(yùn)行了9次,輸出的k值為10.
故選A.

點(diǎn)評(píng) 本題考查了直到型循環(huán)結(jié)構(gòu)的程序框圖,由程序框圖判斷程序運(yùn)行的功能,用裂項(xiàng)相消法求和是解答本題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,S10=55,且a2、a4、a8成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=$\frac{{S}_{n}}{n}$(n∈N*),求b1+b5+b9+…+b4n-3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點(diǎn)A的坐標(biāo)為(1,0),P為半圓C:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù),0≤θ≤π)上的點(diǎn),弧$\widehat{AP}$的長(zhǎng)度為$\frac{π}{3}$,O為坐標(biāo)原點(diǎn).
(1)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AP的極坐標(biāo)方程;
(2)若M為半圓C上的動(dòng)點(diǎn),用半圓C的參數(shù)方程求點(diǎn)M到直線AP距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若相互垂直的兩條異面直線l1與l2滿足條件:l1?α,l2∥α,且平面α內(nèi)的動(dòng)點(diǎn)P到l1與l2的距離相等,則點(diǎn)P的軌跡是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(Ⅰ)若曲線y=f(x)在點(diǎn)P(x0,f(x0))處與直線y=b相切,求b的值;
(Ⅱ)若任意x∈[$\frac{1}{e}$,e]均使不等式2f(x)≥-x2+ax-3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)為分段函數(shù),當(dāng)x∈[1,2]時(shí),f(x)=2x+6;當(dāng)x∈[-1,1)時(shí),f(x)=x+7,則f(x)的最大值和最小值分別為(  )
A.10,6B.10,8C.8,6D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在區(qū)間[-1,5]上隨機(jī)地取一個(gè)數(shù)x,則|x|≤1的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(x2+x+1)5展開式中,x5的系數(shù)為( 。
A.51B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{5}}}{3}$,且過點(diǎn)P(3,2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)與直線OP(O為坐標(biāo)原點(diǎn))平行的直線l交橢圓C于A,B兩點(diǎn),求證:直線PA,PB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案