【題目】從正方體六個面的對角線中任取兩條作為一對,這對對角線所成的角為的概率為________
【答案】
【解析】
正方體的面對角線共有12條,能夠數(shù)出每一條對角線和另外的8條構(gòu)成8對直線所成角為60°,得共有12×8對對角線所成角為60°,并且容易看出有一半是重復(fù)的,得正方體的所有對角線中,所成角是60°的有48對,根據(jù)古典概型概率公式求解即可.
如圖,在正方體ABCD﹣A1B1C1D1中,與上平面A1B1C1D1中一條對角線A1C1成60°的直線有:
A1D,B1C,A1B,D1C,BC1,AD1,C1D,B1A共八對直線,總共12條對角線;
∴共有12×8=96對面對角線所成角為60°,而有一半是重復(fù)的;
∴從正方體六個面的對角線中任取兩條作為一對,其中所成的角為60°的共有48對.
而正方體的面對角線共有12條,
所以概率為:
故答案為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C的頂點在坐標(biāo)原點,對稱軸為x軸,拋物線C過點A(4,4),過拋物線C的焦點F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點.
(1)求拋物線C的方程;
(2)求線段MN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,設(shè)直線與軸的交點為,過點且斜率為的直線與橢圓交于兩點,為線段的中點.
(1)若直線的傾斜角為,求的值;
(2)設(shè)直線交直線于點,證明:直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對x呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以為公差的等差數(shù)列,數(shù)列是以為公比的等比數(shù)列.
(1)若數(shù)列的前項和為,且,,求整數(shù)的值;
(2)若,,,試問數(shù)列中是否存在一項,使得恰好可以表示為該數(shù)列中連續(xù)項的和?請說明理由;
(3)若,,(其中,且是的約數(shù)),求證:數(shù)列中每一項都是數(shù)列中的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓左、右頂點分別為A、B,上頂點為D(0,1),離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點E是橢圓C上位于x軸上方的動點,直線AE、BE與直線分別交于M、N兩點,當(dāng)線段MN的長度最小時,橢圓C上是否存在點T使的面積為?若存在,求出點T的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,則當(dāng)時,函數(shù)的圖象是否總在直線上方?請寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對4月份員工的獎金情況統(tǒng)計如下:
獎金(單位:元) | 8000 | 5000 | 4000 | 2000 | 1000 | 800 | 700 | 600 | 500 |
員工(單位:人) | 1 | 2 | 4 | 6 | 12 | 8 | 20 | 5 | 2 |
根據(jù)上表中的數(shù)據(jù),可得該公司4月份員工的獎金:①中位數(shù)為800元;②平均數(shù)為1373元;③眾數(shù)為700元,其中判斷正確的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com