函數(shù)y=sinx+cos2x的值域是


  1. A.
    [-1,數(shù)學(xué)公式]
  2. B.
    [-1,1]
  3. C.
    [1,數(shù)學(xué)公式]
  4. D.
    (-∞,數(shù)學(xué)公式]
A
分析:把函數(shù)解析式的第二項利用同角三角函數(shù)間的基本關(guān)系sin2x+cos2x=1化簡,得到y(tǒng)關(guān)于sinx的二次函數(shù),利用完全平方公式配方后,根據(jù)正弦的值域求出sinx的范圍,利用二次函數(shù)的性質(zhì)可得出函數(shù)的最大值及最小值,進(jìn)而確定出函數(shù)的值域.
解答:y=sinx+cos2x=sinx+1-sin2x=-(sinx-2+,
∵sinx∈[-1,1],
∴sinx=時,ymax=,又sinx=-1時,ymin=-1,
∴函數(shù)的值域為[-1,].
故選A
點評:此題考查了同角三角函數(shù)間的基本關(guān)系,正弦函數(shù)的定義域與值域,以及二次函數(shù)在閉區(qū)間上的最值,其中靈活運用同角三角函數(shù)間的基本關(guān)系得出y關(guān)于sinx的二次函數(shù)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、函數(shù)y=|sinx|-2sinx的值域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列結(jié)論:
①已知a,b,c為實數(shù),則“b2=ac”是“a,b,c成等比數(shù)列”的充要條件; 
②滿足條件a=3,b=2
2
,A=450
的△ABC的個數(shù)為2;
③若兩向量
a
=(-2,1),
b
=(λ,-1)
的夾角為鈍角,則實數(shù)λ的取值范圍為(-
1
2
,+∞)

④若x為三角形中的最小內(nèi)角,則函數(shù)y=sinx+cosx的值域是(1,
2
]
; 
⑤某廠去年12月份產(chǎn)值是同年一月份產(chǎn)值的m倍,則該廠去年的月平均增長率為
11m
-1
;
則其中正確結(jié)論的序號是
④⑤
④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為互不相等的三個正數(shù),函數(shù)f(x)可能滿足如下性質(zhì):
①f(x-a)為奇函數(shù);②f(x+a)為奇函數(shù);③f(x-b)為偶函數(shù);④f(x+b)為偶函數(shù).
類比函數(shù)y=sinx的對稱中心、對稱軸與周期的關(guān)系,某同學(xué)得出了如下結(jié)論:
(1)若滿足①②,則f(x)的一個周期為4a;(2)若滿足①③,則f(x)的一個周期為4|a-b|;(3)若滿足③④,則f(x)的一個周期為3|a-b|.
其中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列哪個區(qū)間上,函數(shù)y=sinx和y=cosx都是增函數(shù)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)y=sinx的圖象沿x軸向左平移
π
3
個單位,然后再把圖象上每個點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)保持不變),得到函數(shù)y=f(x)的圖象,則y=f(x)的解析式為( 。

查看答案和解析>>

同步練習(xí)冊答案