3.分析法證明命題中所說的“執(zhí)果索因”是指尋求使命題成立的( 。
A.必要條件B.充分條件C.充要條件D.必要或充分條件

分析 利用分析法證明不等式的方法和步驟,結(jié)合充分條件的定義,做出判斷.

解答 解:用分析法證明不等式成立時用的方法是:要證此不等式成立,只要證明某條件具備即可,也就是說只要某條件具備,
此不等式就一定成立,故某條件具備是不等式成立的充分條件.因此,“執(zhí)果索因”是指尋求使不等式成立的充分條件,
故選 B.

點評 本題考查用分析法證明不等式的方法,充分條件的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,則$\overrightarrow{BC}$等于( 。
A.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$B.-$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$C.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$D.-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點A(-1,2),B(2,3),若直線l:kx-y-k+1=0與線段AB相交,則實數(shù)k的取值范圍是( 。
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示的空間幾何體ABCDEFG中,四邊形ABCD是邊長為2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1,AE=3
(Ⅰ)求證:平面CFG⊥平面ACE
(Ⅱ)求平面CEG與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“m=1”是“直線x-y=0和直線x+my=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.為了促銷某電子產(chǎn)品,商場進行降價,設(shè)m>0,n>0,m≠n,有三種降價方案:
方案①:先降m%,再降n%;
方案②:先降$\frac{m+n}{2}%$,再降$\frac{m+n}{2}%$;
方案③:一次性降價(m+n)%.
則降價幅度最小的方案是②.(填出正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;
(Ⅱ)設(shè)函數(shù)$F(x)=-x[g(x)+\frac{1}{2}x-2]$,若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;
(Ⅲ)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0).若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-alnx-a,其中常數(shù)a>0,若f(x)有兩個零點x1,x2(0<x1<x2),求證:$\frac{1}{a}<{x_1}<1<{x_2}<a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列結(jié)論正確的是①②④.
①在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內(nèi)取值的概率為0.35,則ξ在(0,2)內(nèi)取值的概率為0.7;
②以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=e4
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④設(shè)常數(shù)a、b∈R+,則不等式ax2-(a+b-1)x+b>0對?x>1恒成立的充要條件是a≥b-1.

查看答案和解析>>

同步練習(xí)冊答案