(本小題滿分12分)已知
(1)若,求的取值構成的集合.
(2)若,求的值.

(1) ;(2)

解析試題分析:(1) 先化簡函數(shù)f(x),再解即可.(2) 由,即
,然后代入即可.
(1)由已知可得     (3分)
因為,即,有  (5分).
所以取值的集合為  (6分)
(2)因為,    (9分)
所以      (12分)
考點:解三角方程;誘導公式,三角函數(shù)式的化簡.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(wx+j)(w>0,<j<0)圖象上的任意兩點,且角j的終邊經(jīng)過點P(l,-),若|f(x1)-f(x2)|=4時,|x1-x2|的最小值為.
(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)當x∈時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,內(nèi)角所對邊長分別為,,
(1)求的最大值及的取值范圍;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入的部分數(shù)據(jù)如下表:



















 
(1)請求出上表中的,并直接寫出函數(shù)的解析式;
(2)將的圖象沿軸向右平移個單位得到函數(shù),若函數(shù)(其中)上的值域為,且此時其圖象的最高點和最低點分別為,求夾角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(1)當時,求在區(qū)間上的最大值與最小值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若直線是函數(shù)圖象的一條切線.
(1)求函數(shù)的解析式;
(2)若函數(shù)圖象上的兩點、的橫坐標依次為2和4,為坐標原點,求△的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2cos2x+sin2x-+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若x∈[-,],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2cosxsin(x+)-sin2x+sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象沿x軸向右平移m個單位后的圖象關于直線x=對稱,求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)當時,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案