若函數(shù)f(x)=sinax•cosax-sin2ax(a>0)的圖象與直線y=m相切,并且切點的橫坐標依次成公差為π的等差數(shù)列.
(Ⅰ)求m的值;
(Ⅱ)求f(x)的單調增區(qū)間.
分析:(Ⅰ)化簡函數(shù)f(x)=sinax•cosax-sin2ax為y=
2
2
sin(2ax+
π
4
)-
1
2
,求出它的最值,圖象與直線y=m相切,所以最值就是m的值;
(Ⅱ)根據(jù)周期求出a的值,然后再求函數(shù)f(x)的單調增區(qū)間.
解答:解:(Ⅰ)f(x)=sinax•cosax-sin2ax(a>0)=
1
2
sin2ax-
1-cos2ax
2
=
2
2
sin(2ax+
π
4
)-
1
2
(3分)
由題意知,m為f(x)的最大值或最小值,所以m=
2
-1
2
m=-
2
+1
2
(6分)
(Ⅱ)由題設知,函數(shù)f(x)的周期為π,
∴a=(18分)
f(x)=
2
2
sin(2x+
π
4
)-
1
2

2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈Z
kπ-
8
≤x≤kπ+
π
8
,k∈Z

∴f(x)的單調增區(qū)間[kπ-
8
,kπ+
π
8
],k∈Z
(12分)
點評:本題考查正弦函數(shù)的單調性,等差數(shù)列的性質,三角函數(shù)的周期性及其求法,三角函數(shù)的最值,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•寧波二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,設函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•眉山一模)設函數(shù)f(x)對其定義域內的任意實數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號是
①③④
①③④
(寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:寧波二模 題型:解答題

在△ABC中,角A,B,C所對的邊分別為a,b,c,設函數(shù)f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若函數(shù)f(x)在x=
π
3
處取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設函數(shù)f(x)對其定義域內的任意實數(shù),則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是    (寫出所有你認為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:四川省模擬題 題型:填空題

設函數(shù)f(x)對其定義域內的任意實數(shù)x1與x2都有,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對定義域內任意x1、x2、x3,…,xn都有(當x1=x2=x3=…=xn時等號成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點,點C在線段AB上,且,則;
④設A,B,C是一個三角形的三個內角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號是(     )(寫出所有你認為正確命題的序號).

查看答案和解析>>

同步練習冊答案