【題目】對下列命題:
①直線與函數的圖象相交,則相鄰兩交點的距離為;
②點 是函數的圖象的一個對稱中心;
③函數在上單調遞減,則的取值范圍為;
④函數若對R恒成立,則.
其中所有正確命題的序號為____
科目:高中數學 來源: 題型:
【題目】某企業(yè)2018年招聘員工,其中,,,,五種崗位的應聘人數、錄用人數和錄用比例(精確到1%)如下:
崗位 | 男性 應聘人數 | 男性 錄用人數 | 男性 錄用比例 | 女性 應聘人數 | 女性 錄用人數 | 女性 錄用比例 |
269 | 167 | 40 | 24 | |||
40 | 12 | 202 | 62 | |||
177 | 57 | 184 | 59 | |||
44 | 26 | 38 | 22 | |||
3 | 2 | 3 | 2 | |||
總計 | 533 | 264 | 467 | 169 |
(1)從表中所有應聘人員中隨機選擇1人,試估計此人被錄用的概率;
(2)從應聘崗位的6人中隨機選擇2人.記為這2人中被錄用的人數,求的分布列和數學期望;
(3)表中,,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現,若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3≤0},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.
(1)若A∪B=A,求實數m的取值;
(2)若A∩B={x|0≤x≤3},求實數m的值;
(3)若A,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為 .
(1)求橢圓的方程;
(2)若上存在兩點,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的偶函數f(x)和奇函數g(x)滿足.
(1)求函數f(x)和g(x)的表達式;
(2)當時,不等式恒成立,求實數a的取值范圍;
(3)若方程在上恰有一個實根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數)分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學生中選兩人,求他們在同一分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對兩個品牌的共享單車在編號分別為的五個城市的用戶人數(單位:十萬)進行統計,得到數據如下:
城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享單車用戶人數超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據此判斷能否有85%的把握認為“優(yōu)城”和共享單車品牌有關?
(Ⅱ)若不考慮其它因素,為了拓展市場,對A品牌要從這五個城市選擇三個城市進行宣傳,
(。┣蟪鞘2被選中的概率;
(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若函數的圖像與軸無交點,求的取值范圍;
(2)若方程在區(qū)間上存在實根,求的取值范圍;
(3)設函數,,當時若對任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com