已知函數(shù)f(x)=
3
sinωx(ω>0)的部分圖象如圖所示,若∠ABC=90°,則函數(shù)y=f(x+1)是(  )
A、周期為4的奇函數(shù)
B、周期為4的偶函數(shù)
C、周期為2π的非奇非偶函數(shù)
D、周期為4的非奇非偶函數(shù)
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:先表示出函數(shù)的最小正周期,則A,B,C的坐標(biāo)可分別表示出來,進(jìn)而根據(jù)∠ABC=90°判斷出兩直線斜率的乘積為-1求得ω,則函數(shù)最小正周期可得.進(jìn)而求得f(x+1)推斷出函數(shù)的奇偶性.
解答: 解:依題意T=
ω
,
則A點(diǎn)坐標(biāo)為(
π
,
3
),B的坐標(biāo)為(
ω
,0),C坐標(biāo)為(
,-
3
),
∵∠ABC=90°,
∴kAB•kBC=
3
π
-
ω
3
ω
-
=-1,求得ω=
π
2
,
∴T=
ω
=4,
∴f(x)=
3
sinωx=
3
sin(
π
2
x),
∴f(x+1)=
3
sin(
πx
2
+
π
2
)=
3
cos
πx
2
,
∴f(x+1)為偶函數(shù),
故選B.
點(diǎn)評(píng):本題主要考查了三角函數(shù)圖象和性質(zhì).考查了學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以F(0,1)為圓心的圓交直線y=-1于A,B兩點(diǎn),且△FAB為等腰直角三角形,則圓F的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x-3,x≥10
f[f(x+5)],x<10
,則f(6)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是( 。
A、y=x2
B、y=x3
C、y=tanx
D、y=
1
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,角α的終邊與單位圓交于點(diǎn)A,點(diǎn)A在第二象限,且點(diǎn)A的橫坐標(biāo)與縱坐標(biāo)之比為-
1
2
,則
cos2α-sin2α
sin2α+2cos2α
的值為(  )
A、-
1
2
B、
8
5
C、
5
6
D、-
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
2x+y-2≥0
x-2y+4≥0
x-m≤0
,則“m≥2”是“目標(biāo)函數(shù)z=3x-2y的最大值不小于5”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,底面ABCD是邊長(zhǎng)為2的菱形,且∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積是( 。
A、
3
B、
3
2
C、3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是26,則在①處應(yīng)填入的條件是( 。
A、K>2?B、K>3?
C、K>4?D、K>5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查我市在校中學(xué)生參加體育運(yùn)動(dòng)的情況,從中隨機(jī)抽取了16名男同學(xué)和14名女同學(xué),調(diào)查發(fā)現(xiàn),男、女同學(xué)中分別有12人和6人喜愛運(yùn)動(dòng),其余不喜愛.   
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜愛運(yùn)動(dòng) 不喜愛運(yùn)動(dòng) 總計(jì)
16
14
總計(jì) 30
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為性別與喜愛運(yùn)動(dòng)有關(guān)?
(3)將以上統(tǒng)計(jì)結(jié)果中的頻率視作概率,從我市中學(xué)生中隨機(jī)抽取3人,若其中喜愛運(yùn)動(dòng)的人數(shù)為ξ,求ξ的分布列和均值.參考數(shù)據(jù):
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案