若方程x2+2xy+ay2+3x+9y=0表示兩條直線,則a=
 
考點(diǎn):直線的一般式方程
專題:直線與圓
分析:方程x2+2xy+ay2+3x+9y=0表示兩條直線,因式分解為(x+my+b)(x+
a
m
y+c)=0,展開比較系數(shù)即可得出.
解答: 解:∵方程x2+2xy+ay2+3x+9y=0表示兩條直線,
∴因式分解為(x+my+b)(x+
a
m
y+c)=0,
展開為x2+(
a
m
+m)xy+ay2
+(b+c)x+(mc+
ab
m
)y+bc=0.
與x2+2xy+ay2+3x+9y=0比較可得
a
m
+m=2
b+c=3
mc+
ab
m
=9
bc=0
,解得
b=0
c=3
m=3
a=-3
c=0
b=3
m=-1
a=-3

故答案為:-3.
點(diǎn)評(píng):本題考查了直線的方程、因式分解、恒等式問題,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為△ABC的三個(gè)內(nèi)角,向量
α
=(cos
A-B
2
,
3
sin
A+B
2
),|
α
|=
2
.如果當(dāng)C最大時(shí),存在動(dòng)點(diǎn)M,使得|
MA
|,|
AB
|,|
MB
|成等差數(shù)列,則
|
MC
|
|
AB
|
最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,
tanB
tanC
=
2a-c
c

(Ⅰ)求角B的大;
(Ⅱ)求函數(shù)f(x)=sinx•cos(x+B)+
3
4
(x∈[0,
π
2
])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-12x
(1)求函數(shù)f(x)的極值;
(2)當(dāng)x∈[-3,3]時(shí),求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+2)x2+2ax-a2(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=4,y=f(x)的圖象與直線y=m有三個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sin50°+cos10°(1+
3
tan10°)
1+cos10°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,BC=
2
,AC=1,以AB為邊作等腰直角三角形ABD(B為直角頂點(diǎn),C、D兩點(diǎn)在直線AB的兩側(cè)).當(dāng)∠C變化時(shí),線段CD長的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長分別為a,b,c,若k<
2c-b
2a
對任意的a,b,c恒成立,則
k2-2k+3
1-k
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,4),
b
=(2,-1),如果向量
a
-x
b
b
垂直,則x的值為( 。
A、
23
3
B、
3
23
C、
2
5
D、-
2
5

查看答案和解析>>

同步練習(xí)冊答案