【題目】已知函數(shù).
(Ⅰ)求證:對于任意,不等式恒成立;
(Ⅱ)設(shè)函數(shù),,求函數(shù)的最小值.
【答案】(Ⅰ)證明見解析;(Ⅱ)0.
【解析】
(I)證明不等式恒成立,轉(zhuǎn)化為證明,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可求解;
(Ⅱ)當(dāng)時(shí),由(Ⅰ)知 ,要證,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,即可求解.
(Ⅰ)由題意,對于任意,要證,只需證,
令,則,
令,則,所以在上單調(diào)遞增,
所以,即,所以在上單調(diào)遞增,
所以,
故不等式恒成立.
(Ⅱ)當(dāng)時(shí),由(Ⅰ)知 ,
要證:,只需證,
令,則,
令,則,
所以函數(shù)在上單調(diào)遞增,所以,即,
所以在上單調(diào)遞增,可得,
所以,所以得證,
即,即,所以,
又,所以當(dāng)時(shí),,且時(shí),等號成立,
故的最小值為0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))
(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)首項(xiàng)為a1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,q為非零常數(shù),已知對任意正整數(shù)n,m,Sn+m=Sm+qmSn總成立.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若不等的正整數(shù)m,k,h成等差數(shù)列,試比較ammahh與ak2k的大。
(3)若不等的正整數(shù)m,k,h成等比數(shù)列,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)存在兩個(gè)物種,前者有充足的食物和生存空間,而后者僅以前者為食物,則我們稱前者為被捕食者,后者為捕食者.現(xiàn)在我們來研究捕食者與被捕食者之間理想狀態(tài)下的數(shù)學(xué)模型.假設(shè)捕食者的數(shù)量以表示,被捕食者的數(shù)量以表示.如圖描述的是這兩個(gè)物種隨時(shí)間變化的數(shù)量關(guān)系,其中箭頭方向?yàn)闀r(shí)間增加的方向.下列說法正確的是( )
A.若在、時(shí)刻滿足:,則
B.如果數(shù)量是先上升后下降的,那么的數(shù)量一定也是先上升后下降
C.被捕食者數(shù)量與捕食者數(shù)量不會同時(shí)到達(dá)最大值或最小值
D.被捕食者數(shù)量與捕食者數(shù)量總和達(dá)到最大值時(shí),被捕食者的數(shù)量也會達(dá)到最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)y=f(f(x))-1的零點(diǎn)個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,函數(shù)g(x)=kx﹣cosx在點(diǎn)處的切線平行于x軸.
(1)求函數(shù)f(x)的極值;
(2)討論函數(shù)F(x)=g(x)﹣f(x)的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com