【題目】在銳角中,A、B、C分別為三邊a,b,c所對的角。若,且,則a+c的取值范圍是( )
A. B. C. D.
【答案】D
【解析】
由,推導(dǎo)出B=60°,由推導(dǎo)出b=由此能求出a+c的取值范圍.
∵在銳角△ABC中,A、B、C分別為△ABC三邊a,b,c所對的角,,
∴2sin(B+30°)=2,∴B=60°,
∴2sin2B+2sinBcosB=3,
∵,
∴
解得b=,∴a+c>.
由余弦定理b2=a2+c2﹣2accosB
即()2=a2+c2﹣2bccos60°
即3=(a+c)2﹣2ac﹣2ac,即3=(a+c)2﹣3ac
即3ac=(a+c)2﹣3,即[(a+c)2﹣3]=3ac≤3[(a+c)]2
令t=a+c
即t2﹣3=3ac≤3()2,整理得t2≤12
即t的最大值2
即a+c的最大值為2,
綜上,a+c的取值范圍是.
故答案為:D
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線的方程:
(1)直線經(jīng)過點(diǎn),并且它的傾斜角等于直線的傾斜角的2倍,求直線的方程;
(2)直線過點(diǎn),并且在軸上的截距是軸上截距的,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx-)+1(A>0, ω>0)與ω=cosωx的部分圖象如圖所示。
(1)求A,a,b的值及函數(shù)f(x)的遞增區(qū)間;
(2)若函數(shù)y= g(x-m)(m>)與y= f(x)+ f(x-)的圖象的對稱軸完全相同,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實(shí)數(shù)解,則a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個交點(diǎn), .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)是宜昌市個普通職工的年收入,設(shè)這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)兩定點(diǎn)和,動點(diǎn),滿足,動點(diǎn)的軌跡為曲線,給出下列五個命題:
①存在,使曲線過坐標(biāo)原點(diǎn);
②對于任意,曲線與軸有三個交點(diǎn);
③曲線關(guān)于軸對稱,但不關(guān)于軸對稱;
④若三點(diǎn)不共線,則周長最小值為;
⑤曲線上與不共線的任意一點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)為,則四邊形的面積不大于.
其中真命題的序號是__________(填上所有正確命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com