【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)可以填入

A. B. C. D.

【答案】C

【解析】分析:由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

詳解:模擬程序的運行,可得S=2,i=1

此時,由題意應(yīng)該滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=﹣1,i=2

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=,i=3

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=2,i=4

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=﹣1,i=5

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=,i=6

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=2,i=7

滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,S=﹣1,i=8

觀察可得,當i=7時,應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值為2.

可得:6≤i<7.

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

(1)求證:對任意x1,x2[1,1],有[f(x1)f(x2)]·(x1x2)0;

(2)f(1a)f(1a2)0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: (a>2 )的右焦點為F,右頂點為A,上頂點為B,且滿足 ,其中O 為坐標原點,e為橢圓的離心率.
(1)求橢圓C的方程;
(2)設(shè)點P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點,點F2關(guān)于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考數(shù)學(xué)試題中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給出了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分數(shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過對某城市一天內(nèi)單次租用共享自行車的時間分鐘到鐘的人進行統(tǒng)計,按照租車時間, , 分組做出頻率分布直方圖,并作出租用時間和莖葉圖(圖中僅列出了時間在 的數(shù)據(jù)).

(1)求的頻率分布直方圖中的;

(2)從租用時間在分鐘以上(含分鐘)的人數(shù)中隨機抽取人,設(shè)隨機變量表示所抽取的人租用時間在內(nèi)的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:在△ABC中,若AB<BC,則sinC<sinA;命題q:已知a∈R,則“a>1”是“ <1”的必要不充分條件.在命題p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命題個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“楊輝三角”又稱“賈憲三角”,是因為賈憲約在公元1050年首先使用“賈憲三角”進行高次開方運算,而楊輝在公元1261年所著的《詳解九章算法》一書中,記錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個數(shù),則這個數(shù)是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案