若曲線y=ex+
12
x2
在x=1處的切線與直線ax-y+1=0平行,則實(shí)數(shù)a=
e+1
e+1
分析:首先求出函數(shù)的導(dǎo)數(shù),再利用在切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率,結(jié)合兩條直線平行進(jìn)而得到a的值.
解答:解:由題意可得:f′(x)=ex+x,
因?yàn)榍y=ex+
1
2
x2
在x=1處的切線與直線ax-y+1=0平行,
所以f′(1)=e+1=a,
所以a=e+1.
故答案為:e+1.
點(diǎn)評:本題考查導(dǎo)數(shù)的幾何意義:在切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率,以及兩條直線平行的充要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+2x2-3x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求證函數(shù)f(x)在區(qū)間[0,1]上存在唯一的極值點(diǎn);
(3)當(dāng)x≥
1
2
時,若關(guān)于x的不等式f(x)≥
5
2
x2+(a-3)x+1
恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+2x2-3x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x≥
1
2
時,若關(guān)于x的不等式f(x)≥
3
2
x2-3x+a
恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+3x2-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥
7
2
x2
+ax+1在x≥
1
2
時恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1
,g(x)=(lnx-1)ex+x.
(1)求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實(shí)數(shù)x0∈(0,e],使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直?若存在,求出x0的值,若不存在,請說明理由;
(3)求證:(1+
1
2
+
1
3
+…+
1
n
)•
n
k=1
ln[k(k+1)(k+2)]>(n-
1
4
)•ln
en
n!
      (n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷解析版) 題型:解答題

(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2

(Ⅰ)求a,b,c,d的值

(Ⅱ)若x≥-2時,f(x)≤kg(x),求k的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案