(本小題滿分14分)
已知函數(shù)F(x)=|2x-t|-x3+x+1(x∈R,t為常數(shù),t∈R).
(Ⅰ)寫出此函數(shù)F(x)在R上的單調(diào)區(qū)間;
(Ⅱ)若方程F(x)-k=0恰有兩解,求實數(shù)k的值.
i) 當(dāng)<-1時,F(x)在區(qū)間(-∞,-1)上是減函數(shù),
在區(qū)間(-1,1)上是增函數(shù),在區(qū)間(1,+∞)上是減函數(shù).
ii) 當(dāng)1>≥-1時,F(x)在區(qū)間(-∞,)上是減函數(shù),
在區(qū)間(,1)上是增函數(shù),在區(qū)間(1,+∞)上是減函數(shù).
iii) 當(dāng)≥1時,F(x)在(-∞,+∞)上是減函數(shù). i) 當(dāng)<-1時,F(xiàn)(x)在x=-1處取得極小值-1-t,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=-1-t或m=3-t.
ii) 當(dāng)-1≤<1,F(x)在x=處取值為,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=或m=3-t.
iii) 當(dāng)≥1時,不存在這樣的實數(shù)m,使得F(x)-m=0恰有兩解
【解析】(Ⅰ)
∴ .……………..4分
由-3x2+3=0 得x1=-1,x2=1,而-3x2-1<0恒成立,
∴ i) 當(dāng)<-1時,F(x)在區(qū)間(-∞,-1)上是減函數(shù),
在區(qū)間(-1,1)上是增函數(shù),在區(qū)間(1,+∞)上是減函數(shù).
ii) 當(dāng)1>≥-1時,F(x)在區(qū)間(-∞,)上是減函數(shù),
在區(qū)間(,1)上是增函數(shù),在區(qū)間(1,+∞)上是減函數(shù).
iii) 當(dāng)≥1時,F(x)在(-∞,+∞)上是減函數(shù). .……………..8分
(II)由1)可知
i) 當(dāng)<-1時,F(xiàn)(x)在x=-1處取得極小值-1-t,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=-1-t或m=3-t.
ii) 當(dāng)-1≤<1,F(x)在x=處取值為,
在x=1處取得極大值3-t,若方程F(x)-m=0恰有兩解,
此時m=或m=3-t.
iii) 當(dāng)≥1時,不存在這樣的實數(shù)m,使得F(x)-m=0恰有兩解..……………..14
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com