數(shù)列{bn}是等比數(shù)列,其前n項(xiàng)和為Sn=2n-k(k∈R).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若an=log2bn+3,求數(shù)列{anbn}的前項(xiàng)的和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:計(jì)算題
分析:(1)利用n≥2時(shí),bn=Sn-Sn-1,即可求數(shù)列{bn}的通項(xiàng)公式;
(2)利用錯(cuò)位相減法,可求數(shù)列{anbn}的前項(xiàng)的和Tn
解答: 解:(1)由Sn=2n-k,得:n≥2時(shí),bn=Sn-Sn-1=2n-1
∵數(shù)列{bn}是等比數(shù)列,b1=2-k,
∴2-k=1,
∴k=1
∴bn=2n-1;
(2)an=log2bn+3=n+2,anbn=(n+2)•2n-1,
∴Tn=3•20+4•2+5•22+…+(n+2)•2n-1,
∴2Tn=3•2+4•22+5•23+…+(n+2)•2n,
兩式相減整理可得,Tn=(n+1)•2n+1.
點(diǎn)評:本題考查等比數(shù)列的通項(xiàng),考查數(shù)列的求和,確定數(shù)列的通項(xiàng),正確運(yùn)用求和方法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,A={x|3≤x<10},B={x|2<x<7}.
求:(1)A∪B;
(2)(CRA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面,且AB=2,AD=EF=1.
(Ⅰ)設(shè)CD的中點(diǎn)為M,求證:EM∥平面DAF;
(Ⅱ)求三棱錐B-CME的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
(x+2)(x+a)
x
是奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),滿足f′(2-x)=f′(x).
(Ⅰ)求f(x)的解析式.
(Ⅱ)若函數(shù)在區(qū)間(m,n)內(nèi)的圖象從左到右的單調(diào)性為依次為減-增-減-增,則稱該函數(shù)在區(qū)間(m,n)內(nèi)是“W-型函數(shù)”.已知函數(shù)g(x)=(x2+k)•
f′(x)
在區(qū)間(-1,2)內(nèi)是“W-型函數(shù)”,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(2x+1)=x2-2x,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
2x,x≤0
,則滿足f(f(x))≥1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A、B、C的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),(α≠
4
,k∈Z),若
AC
BC
=-1,則
1+sin2α-cos2α
1+tanα
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.設(shè)bn=Sn-3n,數(shù)列{bn}的通項(xiàng)公式是
 

查看答案和解析>>

同步練習(xí)冊答案