【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

【答案】1 2)當(dāng)工廠生產(chǎn)百臺時,可使贏利最大為萬元.

【解析】

(1)先求出,再根據(jù)求解;(2)先求出分段函數(shù)每一段的最大值,再比較即得解.

解:(1)由題意得

2)當(dāng)時,

函數(shù)遞減,

(萬元).

當(dāng)時,函數(shù),

當(dāng)時,有最大值為(萬元).

所以當(dāng)工廠生產(chǎn)百臺時,可使贏利最大為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】老師在四個不同的盒子里面放了4張不同的撲克牌,分別是紅桃,梅花,方片以及黑桃,讓明、小紅、小張、小李四個人進行猜測:

小明說:第1個盒子里面放的是梅花,第3個盒子里面放的是方片;

小紅說:第2個盒子里面飯的是梅花,第3個盒子里放的是黑桃;

小張說:第4個盒子里面放的是黑桃,第2個盒子里面放的是方片;

小李說:第4個盒子里面放的是紅桃,第3個盒子里面放的是方片;

老師說:“小明、小紅、小張、小李,你們都只說對了一半.”則可以推測,第4個盒子里裝的是( )

A. 紅桃或黑桃 B. 紅桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 的焦距與橢圓 的短軸長相等,且的長軸長相等,這兩個橢圓在第一象限的交點為,直線經(jīng)過軸正半軸上的頂點且與直線為坐標(biāo)原點)垂直, 的另一個交點為, 交于, 兩點.

(1)求的標(biāo)準(zhǔn)方程;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有最大值, ,且 的導(dǎo)數(shù).

)求的值;

)證明:當(dāng), 時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準(zhǔn)備報考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為15.

(1)求該校報考飛行員的總?cè)藬?shù);

(2)以這所學(xué)校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過65公斤的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個,分別編號為1,2,3,4.現(xiàn)從袋中隨機取兩個球.

(Ⅰ)若兩個球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號的差的絕對值為隨機變量X,求隨機變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只螞蟻在邊長分別為3,4,5的三角形區(qū)域內(nèi)隨機爬行,則其恰在離三個頂點距離都大于1的地方的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析的說法中錯誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

同步練習(xí)冊答案