已知函數(shù)f(x)定義域是{x|x≠
k
2
,k∈Z,x∈R},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當(dāng)
1
2
<x<1時(shí),f(x)=3x
(1)證明:f(x)為奇函數(shù);
(2)求f(x)在(-1,-
1
2
)
上的表達(dá)式;
(3)是否存在正整數(shù)k,使得x∈(2k+
1
2
,2k+1)
時(shí),log3f(x)>x2-kx-2k有解,若存在求出k的值,若不存在說明理由.
考點(diǎn):其他不等式的解法,函數(shù)解析式的求解及常用方法,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由f(x+1)=-
1
f(x)
,可求得f(x)的周期為2,再由f(x)+f(2-x)=0可證f(x)+f(-x)=0,f(x)為奇函數(shù);
(2)-1<x<-
1
2
時(shí),
1
2
<-x<1,利用f(-x)=3-x及f(x)=-f(-x),即可求得f(x)在(-1,-
1
2
)
上的表達(dá)式;
(3)任取x∈(2k+
1
2
,2k+1),則x-2k∈(
1
2
,1)
,利用log3(3x-2k)>x2-kx-2k在x∈(2k+
1
2
,2k+1)有解
,可得k+1>2k+
1
2
,從而可知不存在這樣的k∈N+
解答: (1)證明:f(x+2)=f(x+1+1)=-
1
f(x+1)
=f(x),所以f(x)的周期為2…(2分)
由f(x)+f(2-x)=0,得f(x)+f(-x)=0,所以f(x)為奇函數(shù).…(4分)
(2)解:-1<x<-
1
2
時(shí),
1
2
<-x<1,則f(-x)=3-x…(6分)
因?yàn)閒(x)=-f(-x),所以當(dāng)-1<x<-
1
2
時(shí),f(x)=-3-x…(8分)
(3)解:任取x∈(2k+
1
2
,2k+1),則x-2k∈(
1
2
,1)
,
所以f(x)=f(x-2k)=3x-2k…(10分)
log3(3x-2k)>x2-kx-2k在x∈(2k+
1
2
,2k+1)有解
,x2-(k+1)x<0在x∈(2k+
1
2
,2k+1)有解,k∈N*

(0,k+1)∩(2k+
1
2
,2k+1)≠φ
,
k+1>2k+
1
2

所以不存在這樣的k∈N+…(13分)
點(diǎn)評(píng):本題考查函數(shù)的周期性與奇偶性的判定,考查函數(shù)解析式的求法及解不等式的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是由正數(shù)組成的等比數(shù)列,且a5•a6=9,則log3a1+log3a2+log3a3+…+log3a10的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將號(hào)碼分別為1,2,3,4的四張完全相同的紙片放入一口袋中,甲從袋中摸出一個(gè)紙片,其號(hào)碼為a,放回后,乙從此口袋中再摸出一紙片,其號(hào)碼為b,則使不等式a-2b+1<0成立的事件發(fā)生的概率為( 。
A、
1
8
B、
3
16
C、
5
8
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠共有10臺(tái)機(jī)器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會(huì)產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗(yàn)知道,若每臺(tái)機(jī)器產(chǎn)生的次品數(shù)P(萬(wàn)件)與每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)(4≤x≤10)之間滿足關(guān)系:P=
1
10
x2-
77
15
lnx+3
.已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每產(chǎn)生1萬(wàn)件次品將虧損1萬(wàn)元.(利潤(rùn)=盈利-虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)y(萬(wàn)元)表示為x的函數(shù);
(2)當(dāng)每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)為多少時(shí)所獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),A、B分別是橢圓E的左、右頂點(diǎn),且
AF2
=5
F2B

(1)求橢圓E的離心率;
(2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連接MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連接MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連接PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓柱的表面積為S,當(dāng)圓柱體積最大時(shí),圓柱的高為( 。
A、
S
B、
3πS
C、
6πS
D、3π
6πS

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M是曲線
x2
25
+
y2
9
=1(x≠±5)上任意一點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(-5,0),(5,0),直線AM與直線BM的斜率之積為(  )
A、-
9
25
B、
9
25
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:顧客購(gòu)物總金額不超過800元,不享受任何折扣,如果顧客購(gòu)物總金額超過800元,超過800元部分享受一定的折扣優(yōu)惠,按下表折扣分別累計(jì)計(jì)算:
可以享受折扣優(yōu)惠金額折扣率
     不超過500元的部分5%
     超過500元的部分 10%
某人在此商場(chǎng)購(gòu)物總金額為x元,可以獲得的折扣金額為y元.
(1)寫出y關(guān)于x的解析式.
(2)若y=30,求此人購(gòu)物實(shí)際所付金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程|ax-1|=2-a (a>0,且a≠1)有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案