已知直線l1:x+my+1=0與l2:mx+y+1=0
(1)當l1⊥l2時,求m;
(2)當l1∥l2時,求m.
考點:直線的一般式方程與直線的垂直關系,直線的一般式方程與直線的平行關系
專題:直線與圓
分析:(1)由兩直線ax+by+c=0與mx+ny+d=0垂直?am+bn=0解之即可.
(2)由 l1∥l2 得直線方程中一次項系數(shù)之比相等,但不等于常數(shù)項之比,確定m,n需要滿足的條件.
解答: 解:(1)∵l1⊥l2,∴m+m=0,
解得m=0.
(2)由 l1∥l2 得:
1
m
=
m
1
≠1
,∴m=-1.
點評:本題考查兩直線垂直平行條件的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知曲線y=5
2x+1
,求曲線上與直線5x-2y+1=0平行的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非零向量
a
b
滿足
a
b
-2
a
2
b
2=0,|
a
|+|
b
|=1,則
a
b
的夾角的最小值是( 。
A、
π
6
B、
π
3
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“因為
a
=(1,0),
b
=(0,-1),所以
a
b
=(1,0)•(0,-1)=1×0+0×(-1)=0,所以
a
b
”中,大前提是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(0,
π
4
),cos(α-
π
4
)=
4
5
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(α-
π
2
)=
3
5
,則cos(2π-2α)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為第四象限角,則2a的終邊在第
 
象限,
3a的終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P在正方體ABCD-A1B1C1D1 的對角線BD1上,且cos∠PDA=
6
4
,則直線DP與CC1所成角的大。ā 。
A、75°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,AB⊥面BCD,面ABC⊥面ACD,且∠ACB=∠CBD=45°,
(1)求證:BC⊥CD;
(2)求直線AC與平面ABD所成角的大。

查看答案和解析>>

同步練習冊答案