6.某海輪以30n mile/h的速度航行,在A點(diǎn)測(cè)得海面上油井P在南偏東60°方向,向北航行40min后達(dá)到B點(diǎn),測(cè)得油井P在南偏東30°方向,海輪改為北偏東60°的航向再行駛80min到達(dá)C點(diǎn),則P,C間的距離為( 。
A.20n mileB.20$\sqrt{7}$n mileC.30n mileD.30$\sqrt{7}$n mile

分析 在△ABP中,根據(jù)正弦定理,求BP,再利用余弦定理算出PC的長(zhǎng),即可算出P、C兩地間的距離.

解答 解:如圖,在△ABP中,AB=30×$\frac{40}{60}$=20,∠APB=30°,∠BAP=120°,
根據(jù)正弦定理,BP=$\frac{20×\frac{\sqrt{3}}{2}}{\frac{1}{2}}$=20$\sqrt{3}$.
在△BPC中,BC=30×$\frac{80}{60}$=40.
由已知∠PBC=90°,∴PC=$\sqrt{1200+1600}$=20$\sqrt{7}$(n mile)    
故選B.

點(diǎn)評(píng) 本題給出實(shí)際應(yīng)用問(wèn)題,求兩地之間的距離,著重考查了正弦定理、余弦定理和解三角形的實(shí)際應(yīng)用等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{2x-y+2≥0}\\{2x+y-2≤0}\\{y≥0}\end{array}\right.$,則z=x-y的最小值與最大值的和為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.△ABC中,a=5,c=2,S△ABC=4,則b=( 。
A.$\sqrt{17}$B.$\sqrt{41}$C.$\sqrt{17}$或$\sqrt{41}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}的公差為d,且d>0,等比數(shù)列{bn}為公比q,且q>1,首項(xiàng)b1>0,若an-a1>logabn-logab1(n∈N,n>1,a>0,a≠1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.有2個(gè)人在一座6層大樓的底層進(jìn)入電梯,假設(shè)每一個(gè)人從第二層開(kāi)始在每次離開(kāi)電梯是等可能的,求2人在不同層離開(kāi)電梯的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)=|2-x 2|,若0<a<b且f(a)=f(b),則a+b的取值范圍是(  )
A.(0,2)B.( $\sqrt{2}$,2)C.(2,4)D.(2,2 $\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.從點(diǎn)P(1,3)向⊙O:x2+y2=4引切線PA,PB,其中A,B為切點(diǎn),則|AB|=$\frac{{4\sqrt{15}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(4,2),令an=$\frac{1}{f(n+1)+f(n)}$,n∈N*,記(an}的前n項(xiàng)為Sn,則S2016=(  )
A.$\sqrt{2014}$-1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2017}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知兩條直線l1:y=$\sqrt{3}$x,l2:ax+y=0,a為實(shí)數(shù),當(dāng)這條直線的夾角在[0,$\frac{π}{3}$)內(nèi)變動(dòng)時(shí)a的取值范圍是( 。
A.(-∞,$\sqrt{3}$)B.(-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$)C.(-∞,0)∪($\sqrt{3}$,+∞)D.(-$\sqrt{3}$,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案