已知數(shù)列{an}中,a1=3,an+1=
1
an-1
+1,則a2014=
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:由題意可知{an-1}為周期數(shù)列且周期為2,a1-1=2,即可求出答案
解答: 解:∵an+1-1=
1
an-1
=an-1-1

∴{an-1}為周期數(shù)列且周期為2,a1-1=2,
∴a2014-1=a2-1=
1
a1-1
=
1
2
,
a2014=
3
2

故答案為:
3
2
點評:本題考查數(shù)列遞推式,考查數(shù)列的通項,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
x
-x,且對任意的x∈(0,1),都有f(x)•f(1-x)≥1恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,離心率e=
2
2
,焦點在x2+y2=1上,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=kx+b過原點的充要條件是b=0.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F(X)是奇函數(shù),且有f(x+1)=-
1
f(x)
,當x∈(0,
1
2
)時,f(x)=8x
(1)求f(-
1
3
),f(
2
3
),f(
5
3
)的值;
(2)當2k+
1
2
<x<2k+1,(k∈Z)時,求f(x)的解析式;
(3)是否存在k∈N*,使2k+
1
2
<x<2k+1時,不等式log8f(x)>x2-(k+3)x-k+2有解?若存在,求出k的值及對應的不等式的解;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex(x2+ax+b)的圖象在x=0處的切線方程為y=3,其中有e為自然對數(shù)的底數(shù).
(1)求a,b的值;
(2)當-2<x<t時,證明f(t)>
13
e2
;
(3)對于定義域為D的函數(shù)y=g(x)若存在區(qū)間[m,n]⊆D時,使得x∈[m,n]時,y=g(x)的值域是[m,n].則稱[m,n]是該函數(shù)y=g(x)的“保值區(qū)間”.設h(x)=f(x)+(x-2)ex,x∈(1,+∞),問函數(shù)y=h(x)是否存在“保值區(qū)間”?若存在,求出一個“保值區(qū)間”,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=2ax2的準線方程是y=2,則a的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一游泳池長50m,甲在游泳訓練時經(jīng)測算發(fā)現(xiàn),他每游完10s時,速度就減慢0.2m/s.已知他游完50m全程的時間是38s,則他入水時的游泳速度是
 
 m/s.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
kex
x
在(1,e)處的切線方程為
 

查看答案和解析>>

同步練習冊答案