某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
8
3
B、4
C、2
D、
4
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為三棱錐,且三棱錐的一個(gè)側(cè)面與底面垂直,高為2,底面三角形的底邊長(zhǎng)為4,高為3,把數(shù)據(jù)代入棱錐的體積公式計(jì)算.
解答: 解:由三視圖知幾何體為三棱錐,且三棱錐的一個(gè)側(cè)面與底面垂直,高為2,
底面三角形的底邊長(zhǎng)為4,高為3,
∴幾何體的體積V=
1
3
×
1
2
×4×3×2=4.
故選:B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是由三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線y=ax+1(a>0)與曲線
lg(2-|x-1|)
lgy
=
1
2
恰有2個(gè)公共點(diǎn),則a的取值的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2+x+1
kx2-kx+4
的定義域?yàn)镽,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)(
1+i
1-i
2003+(
1-i
1+i
2004等于( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)側(cè)棱與底面垂直的棱柱被一個(gè)平面截去一部分后所剩幾何體的三視圖如圖所示,則截去那一部分的體積為.( 。
A、1
B、
3
2
C、11
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-1≥0},集合B={x|x-1≤0},則(∁RA)∩B=( 。
A、{x|x≥1}
B、{x|-1<x<1}
C、{x|-1x≤1}
D、{x|x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
A、
7
+
10
3
+
14
B、對(duì)任意的實(shí)數(shù)x,都有x3≥x2-x+1恒成立.
C、y=
4
x2+2
+x2(x∈R)
的最小值為2
D、y=2x(2-x),(x≥2)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):
sin2(α+π)•cos(π+α)•cot(-α-2π)
tan(π+α)•cos3(-α-π)

(2)已知sin(π+α)=
1
2
,求sin(2π-α)-cot(α-π)•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)y=
1
2(x-2)2
+1在區(qū)間(2,+∞)內(nèi)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案