15.與直線2x-6y+1=0垂直,且與曲線f(x)=x3+3x2-1相切的直線方程是( 。
A.3x-y+2=0B.3x+y+2=0C.x+3y+2=0D.x-3y-2=0

分析 設(shè)所求的直線方程為y=-3x+m,切點(diǎn)為(n,n3+3n2-1),根據(jù)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)即為切線的斜率,求出n值,可得切點(diǎn)的坐標(biāo),用點(diǎn)斜式求得切線的方程.

解答 解:設(shè)所求的直線方程為y=-3x+m,切點(diǎn)為(n,n3+3n2-1),
則由題意可得3n2+6n=-3,∴n=-1,
故切點(diǎn)為(-1,1),代入切線方程y=-3x+m可得m=-2,
故設(shè)所求的直線方程為y=-3x-2,即3x+y+2=0
故選B.

點(diǎn)評(píng) 本題考查兩直線垂直的性質(zhì),兩直線垂直斜率之積等于-1,函數(shù)在某點(diǎn)的導(dǎo)數(shù)的幾何意義,求出切點(diǎn)的坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,則13+23+33+43+53+63=212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知AB是單位圓O上的一條弦,λ∈R,若$|{\overrightarrow{OA}-λ\overrightarrow{OB}}|$的最小值是$\frac{{\sqrt{3}}}{2}$,則|AB|=1或$\sqrt{3}$,此時(shí)λ=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M.到準(zhǔn)線l的距離為d,則d+|MA|的最小值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知F是拋物線y2=4x的焦點(diǎn),A、B是該拋物線上的點(diǎn),|AF|+|BF|=5,則 線段AB的中點(diǎn)的橫坐標(biāo)為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在△ABC中,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)F在AC邊上,且CF=2FA,BF交CE于點(diǎn)M,設(shè)$\overrightarrow{AM}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,則x+y=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x∈R,使$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=2,命題q:a=2是函數(shù)y=x2-ax+3在區(qū)間[1,+∞)遞增的充分但不必要條件.給出下列結(jié)論:①命題“p∧q”是真命題;
②命題“¬p∧q”是真命題;
③命題“¬p∨q”是真命題;
④命題“p∨¬q”是假命題
其中正確說法的序號(hào)是( 。
A.②④B.②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=2sin(180°-x)+cos(-x)-sin(450°-x)+cos(90°+x).
(1)若f(α)=$\frac{2}{3}$•α∈(0°,180°),求tanα;
(2)若f(α)=2sinα-cosα+$\frac{3}{4}$,求sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊過點(diǎn)P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,則m的值為$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案