已知F1、F2分別是雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn).若,則雙曲線離心率的取值范圍是(    )

A.(1,2]             B.[2 +)           C.(1,3]             D.[3,+)

 

【答案】

C

【解析】

試題分析:由定義知:|PF1|-|PF2|=2a,所以|PF1|=2a+|PF2|

+4a+|PF2| ≥8a,當(dāng)且僅當(dāng)=|PF2|,

即|PF2|=2a時(shí)取得等號(hào)。

設(shè)P(x0,y0) (x0≤-a),由焦半徑公式得:

|PF2|=-ex0-a=2a,

又雙曲線的離心率e>1,∴e∈(1,3],故選C.

考點(diǎn):本題主要考查雙曲線的定義及幾何性質(zhì),均值定理的應(yīng)用。

點(diǎn)評(píng):中檔題,本題綜合性較強(qiáng),是高考常見(jiàn)題型,關(guān)鍵是利用雙曲線的定義,創(chuàng)造應(yīng)用均值定理的條件并靈活運(yùn)用焦半徑公式。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
x25
+y2=1
的左、右焦點(diǎn)F1,F(xiàn)2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島二模)已知F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),
PF2
F1F2
,且|
PF1
|=
2
|
PF2
|
,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1 (a>0, b>0)
的左、右焦點(diǎn),過(guò)點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
DF2
=
F2E
,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左,右焦點(diǎn),P是雙曲線的上一點(diǎn),若
PF1
PF2
=0
|
PF1
|•|
PF2
|=3ab
,則雙曲線的離心率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案