已知當(dāng)x=5時(shí),二次函數(shù)f(x)=ax2+bx取得最小值,等差數(shù)列{an}的前n項(xiàng)和Sn=f(n),a2=-7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn,求Tn.
(1)an=2n-11
(2)Tn=-7-
(1)由題意得:-=5,當(dāng)n≥2時(shí),an=Sn-Sn-1=an2+bn-a(n-1)2-b(n-1)=2an+b-a=2an-11a.
∵a2=-7,得a=1.∴a1=S1=-9,∴an=2n-11.
(2)∵bn,
∴Tn+…+,①
Tn+…+,②
①-②得
Tn=-+…+
=-
=-.
∴Tn=-7-.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)上不具有單調(diào)性,求實(shí)數(shù)的取值范圍;
(2)若.
(。┣髮(shí)數(shù)的值;
(ⅱ)設(shè),,,當(dāng)時(shí),試比較,的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)對(duì)任意x,y∈R,滿足f(x)+f(y)=f(x+y)+2,當(dāng)x>0時(shí),f(x)>2.
(1)求證:f(x)在R上是增函數(shù);
(2)當(dāng)f(3)=5時(shí),解不等式:f(a2-2a-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知的定義域和值域都是,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

“a=1”是“函數(shù)f(x)=x2-4ax+3在區(qū)間[2,+∞)上為增函數(shù)”的________條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2013•重慶)關(guān)于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集為(x1,x2),且:x2﹣x1=15,則a=(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在區(qū)間)上的最大值為4,最小值為3,則實(shí)數(shù)m的取值范圍是(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一元二次不等式對(duì)一切實(shí)數(shù)都成立,則的取值范圍為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案