13.已知圓C1:x2+y2+2x+8y-8=0與圓C2:x2+y2-4x-4y-2=0相交,則圓C1與圓C2的公共弦所在的直線的方程為x+2y-1=0.

分析 利用圓系方程,求出公共弦所在直線方程.

解答 解:圓C1:x2+y2+2x+8y-8=0…①和C2:x2+y2-4x-4y-2=0…②
①-②得公共弦所在的直線方程為:6x+12y-6=0,即x+2y-1=0.
故答案為x+2y-1=0.

點評 本題考查相交弦所在直線的方程,考查計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.(1)sin330°+5${\;}^{1-lo{g}_{5}2}$=2;
(2)$\sqrt{4-2\sqrt{3}}$+$\frac{1}{\sqrt{7+4\sqrt{3}}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知Sn是數(shù)列{an}的前n項和,a1=1,a2=3,數(shù)列{anan+1}是公比為2的等比數(shù)列,則S10=(  )
A.1364B.$\frac{124}{3}$C.118D.124

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“若x2<1,則-1<x<1”的逆否命題是( 。
A.若x2≥1,則-1≥x≥1B.若1≥x≥-1,則x2≥1
C.若x≤-1或x≥1,則x2≥1D.若x2≥1,則x≤-1或x≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知關于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有兩個不相等實根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知一個幾何體的三視圖及其尺寸如圖所示(單位:cm),則它的表面積為24πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知扇形的弧長為6,圓心角弧度數(shù)為3,則其面積為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=2sin(ωx-\frac{π}{3})+1$,其中ω>0.
(I)若對任意x∈R都有$f(x)≤f(\frac{5π}{12})$,求ω的最小值;
(II)若函數(shù)y=lgf(x)在區(qū)間$[\frac{π}{4},\frac{π}{2}]$上單調遞增,求ω的取值范圍•

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a2+a8=8,則數(shù)列{an}的前9項和S9=36.

查看答案和解析>>

同步練習冊答案