1.給出下列命題:
(1)從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β的關(guān)系為α=β;
(2)俯角是鉛垂線與視線所成的角,其范圍為[0,$\frac{π}{2}$];
(3)方位角與方向角其實是一樣的,均是確定觀察點與目標點之間的位置關(guān)系;
(4)方位角大小的范圍是[0,2π),方向角大小的范圍一般是[0,$\frac{π}{2}$);
其中正確的是(1)(3)(4) (填序號)

分析 根據(jù)仰角和俯角的關(guān)系可判斷(1);根據(jù)俯角的定義,可判斷(2);根據(jù)方位角和方向角的定義,可判斷(3);根據(jù)方位角和方向角的范圍,可判斷(4);

解答 解:(1)中:從A處望B處的仰角為α,從B處望A處的俯角為β,根據(jù)兩直線平行,內(nèi)錯角相等可得:α=β;故(1)真命題;
(2)中:俯角是水平線與視線所成的角,其范圍為[0,$\frac{π}{2}$];故(2)為假命題;
(3)方位角與方向角其實是一樣的,均是確定觀察點與目標點之間的位置關(guān)系;故(3)真命題;
(4)方位角大小的范圍是[0,2π),方向角大小的范圍一般是[0,$\frac{π}{2}$);故(4)真命題;
故答案為:(1)(3)(4)

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了仰角,俯角,方位角,方向角等知識點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{1}{2}$(a-x)ex(a>0),存在x∈[0,2],使得f(x)≥e,則實數(shù)a的取值范圍是( 。
A.[3,+∞)B.[2+ln2,+∞)C.[2e,+∞)D.[2+$\frac{2}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.$\overline z$是z的共軛復(fù)數(shù),若z+$\overline z$=2,(z-$\overline z$)i=2(i為虛數(shù)單位),則復(fù)數(shù)z的虛部是(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.高一某班第7學(xué)習(xí)小組在期末的數(shù)學(xué)測試中,得135分的1人,122分的2人,110分的4人,90分的2人,則該學(xué)習(xí)小組數(shù)學(xué)成績的平均數(shù)、中位數(shù)分別是( 。
A.110,110B.110,111C.111,110D.112,111

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知3x=4,y=log${\;}_{\sqrt{3}}}$$\frac{27}{4}$,則x+$\frac{y}{2}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4個不同的實數(shù)根,則實數(shù)a的取值范圍是$({0,\frac{e^2}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知扇形的面積為2,扇形圓心角的弧度數(shù)是4,則扇形的周長是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等腰△ABC的頂角A=$\frac{2π}{3}$,|BC|=2$\sqrt{3}$,以A為圓心,1為半徑作圓,PQ為該圓的一條直徑,則$\overrightarrow{BP}$•$\overrightarrow{CQ}$的最大值為$2\sqrt{3}-3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤0}\\{{x}^{2}+x-3,x>0}\end{array}\right.$,則f[f(1)]=( 。
A.-3B.1C.2D.0

查看答案和解析>>

同步練習(xí)冊答案