設(shè)函數(shù)f(x)=x3+ax2-12x的導(dǎo)函數(shù)為f′(x),若f′(x)的圖象關(guān)于y軸對(duì)稱.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的極值.
分析:(I)f′(x)=3x2+2ax-12,由于f′(x)的圖象關(guān)于y軸對(duì)稱,即可得出a=0.進(jìn)而得到f(x).
(II)令f′(x)=0,解得x=±2.列表即可得出極值.
解答:解:(I)f′(x)=3x2+2ax-12,∵f′(x)的圖象關(guān)于y軸對(duì)稱,∴a=0.
∴f(x)=x3-12x.
(II)由(I)可得f′(x)=3x2-12=3(x+2)(x-2).
令f′(x)=0,解得x=±2.列表如下:
 x  (-∞,-2) -2  (-2,2)  2  (2,+∞)
 f′(x) +  0 -  0 +
 f(x)  單調(diào)遞增  極大值  單調(diào)遞減  極小值  單調(diào)遞增
由表格可知:當(dāng)x=-2時(shí),函數(shù)f(x)取得極大值,且f(-2)=16;當(dāng)x=2時(shí),函數(shù)f(x)取得極小值,
且f(2)=-16.
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、二次函數(shù)的對(duì)稱性等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時(shí),函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當(dāng)函數(shù)f(x)有兩個(gè)零點(diǎn)時(shí),求a的值;
(2)若a∈[3,6],當(dāng)x∈[-4,4]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案