1.直線x-$\sqrt{3}$y+3=0的傾斜角為(  )
A.150°B.60°C.45°D.30°

分析 把直線的方程化為斜截式,求出斜率,根據(jù)斜率和傾斜角的關(guān)系,傾斜角的范圍,求出傾斜角的大。

解答 解:直線x-$\sqrt{3}$y+3=0,即 y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$,故直線的斜率等于$\frac{\sqrt{3}}{3}$,
設(shè)直線的傾斜角等于α,
∵0°≤α<180°,
∴tanα=$\frac{\sqrt{3}}{3}$,
∴α=30°,
故選:D.

點評 本題考查直線的傾斜角和斜率的關(guān)系,以及傾斜角的取值范圍,已知三角函數(shù)值求角的大小.求出直線的斜率
是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.對于集合A={a1,a2,…,an}(n∈N*,n≥3),定義集合S={x|x=ai+aj,1≤i<j≤n},若an=2n+1,則集合S中各元素之和為4n2+2n-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)Sn為等差數(shù)列{an}的前n項的和,a1=-2016,$\frac{{{S_{2007}}}}{2007}-\frac{{{S_{2005}}}}{2005}$=2,則S2016的值為( 。
A.-2015B.-2016C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:x+2y-3=0,直線l1過點(2,3).
(1)若l1⊥l,求直線l1的方程;
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.由于春運的到來,南昌火車站為舒緩候車室人流的壓力,決定在候車大樓外建立臨時候車區(qū),其中K288次列車候車區(qū)是一個總面積為50m2的矩形區(qū)域(如圖所示),矩形場地的一面利用候車廳大樓外墻(長度為12m),其余三面用鐵欄桿圍,并留一個長度為2m的入口.現(xiàn)已知鐵欄桿的租用費用為80元/m.設(shè)該矩形區(qū)域的長為x (單位:m),租用鐵欄桿的總費用為y(單位:元)
(1)將y表示為x的函數(shù),并求出租用此區(qū)域所用鐵欄桿所需費用最小值及相應(yīng)的x;
(2)若所需總費用不超過2160元,則x的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若不等式ax2-ax+1>0的解集為R,則a的取值區(qū)間為(  )
A.(-4,0]B.(-4,4)C.[0,4)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.關(guān)于x的不等式組$\left\{\begin{array}{l}{x-1>{a}^{2}}\\{x-4<2a}\end{array}\right.$有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究居民的休閑方式與性別的關(guān)系,隨機調(diào)查了該社區(qū)80名居民,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視運動合計
101020
105060
總計206080
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“居民的休閑方式與性別有關(guān)系”?
(Ⅱ)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人以運動為休閑方式的人數(shù)為隨機變量X.求X的分布列、數(shù)學(xué)期望和方差.
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖是某幾何體的三視圖,作出它的直觀圖(注意:平行于那條軸的線段長度變短?)

查看答案和解析>>

同步練習(xí)冊答案