【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)若對任意x1 , x2∈[e2 , +∞),有| |> ,求實數(shù)k的取值范圍.
【答案】
(1)解:∵函數(shù)f(x)= ,
∴ ,
令f'(1)=0,
∴ =0,
解得a=1;
令f′(x)=0,則lnx=0,
解得x=1,
即f(x)有極大值為f(1)=1
(2)解:由| |> ,可得 ,
令 ,則g(x)=x﹣xlnx,其中x∈(0,e﹣2],
g'(x)=﹣lnx,又x∈(0,e﹣2],則g'(x)=﹣lnx≥2,
即 ,
因此實數(shù)k的取值范圍是(﹣∞,2]
【解析】(1)求函數(shù)f(x)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義求出a的值,再利用f′(x)=0,求出函數(shù)f(x)的極值;(2)由| |> 變形得 ,構(gòu)造函數(shù) ,利用導(dǎo)數(shù)求出g(x)在定區(qū)間上的取值范圍即可.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取人做調(diào)查,得到如下列聯(lián)表:
已知在這人中隨機抽取一人抽到喜歡游泳的學(xué)生的概率為,
(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;
(Ⅱ)針對問卷調(diào)查的名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取人成立游泳科普知識宣傳組,并在這人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式: ,其中.參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時的社區(qū)服務(wù)才合格.教育部門在全市隨機抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段,,,
,(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù),并估計
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時間不少于90小時的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時間不少于90小時的人數(shù).試求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣ .
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣ )= ,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H.有以下四個命題:
①點H是△A1BD的垂心;②AH垂直平面CB1D1;
③AH= ;④點H到平面A1B1C1D1的距離為 .
其中真命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4x和點M(6,0),O為坐標原點,直線l過點M,且與拋物線交于A,B兩點.
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 則A1B的長度為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐的底面是直角三角形,直角邊長分別為3和4,過直角頂點的側(cè)棱長為4,且垂直于底面,該三棱錐的正視圖是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com