已知函數(shù)f(x)=sin 2ωx+
3
sinωxsin(ωx+
π
2
)+2cos2ωx(ω>0,x∈R)
,在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6

(Ⅰ)求ω的值;
(Ⅱ)若將函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的最大值及單調(diào)遞減區(qū)間.
分析:(Ⅰ)用二倍角公式可將函數(shù)化簡為f(x)=sin(2ωx+
π
6
)+
3
2
,再由在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6
可解得ω=1,
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
π
6
)+
3
2
,由正弦函數(shù)的性質(zhì),根據(jù)圖象變換規(guī)律得出(x)=sin(
1
2
x-
π
6
)+
3
2
,令2kπ+
π
2
1
2
x-
π
6
≤2kπ+
2
(k∈Z),即可解出其單調(diào)增區(qū)間.
解答:解:(Ⅰ)f(x)=
1-cos2ωx
2
+
3
2
sin2ωx+1+cos2ωx
=
3
2
sin2ωx+
1
2
cos2ωx+
3
2

=sin(2ωx+
π
6
)+
3
2

令2ωx+
π
6
=
π
2
,將x=
π
6
代入可得:ω=1,
(Ⅱ)由(Ⅰ)得f(x)=sin(2x+
π
6
)+
3
2
,
函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位后得出y=sin[2(x-
π
6
)+
π
6
)]+
3
2
=sin(2x-
π
6
)+
3
2
,
再將得到的圖象上各點(diǎn)橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)=sin(
1
2
x-
π
6
)+
3
2

最大值為1+
3
2
=
5
2
,
令2kπ+
π
2
1
2
x-
π
6
≤2kπ+
2
(k∈Z),
4kπ+
4
3
π≤x≤4kπ+
10π
3
,
單減區(qū)間[4kπ+
4
3
π,4kπ+
10π
3
],(k∈Z).
點(diǎn)評:本題考查了利用兩角和與差的公式化簡解析式,三角函數(shù)的性質(zhì),圖象變換規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時(shí)有x2∈S,給出下列四個(gè)結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記aij是這個(gè)數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個(gè)數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項(xiàng)和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個(gè)實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個(gè)上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案