等比數(shù)列{an}的前n項和為Sn,若S4=6,S8=18,則S12=(  )
A、42B、78C、96D、104
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由已知直接結(jié)合S4,S8-S4,S12-S8成等比數(shù)列得答案.
解答: 解:∵數(shù)列{an}是等比數(shù)列,且S4=6,S8=18,
(S8-S4)2=S4•(S12-S8),即
122=6(S12-18)2,解得:S12=42.
故選:A.
點評:本題考查了等比數(shù)列的性質(zhì),關(guān)鍵是對性質(zhì)得理解與記憶,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x+2
(x≠2,x∈R),數(shù)列{an}滿足a1=t(t≠-2,t∈R),an+1=f(an),(n∈N)
(Ⅰ)若數(shù)列{an}是常數(shù)列,求t的值;
(Ⅱ)當(dāng)a1=2時,記bn=
an+1
an-1
(n∈N*),證明:數(shù)列{bn}是等比數(shù)列,并求出通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有正奇數(shù)如圖數(shù)表排列(圖中下一行中的數(shù)的個數(shù)是上一行中數(shù)的個數(shù)的2倍),則第m行中的第n個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(a,b),a,b滿足a2+b2≤1,則關(guān)于x的二次方程4x2+4bx+3a2=0有實數(shù)根的概率為( 。
A、
1
6
B、
1
3
C、
2
3
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“A=30°”是“sinA=
1
2
”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,定義域是R+且為增函數(shù)的是( 。
A、y=e-x
B、y=x
C、y=lnx
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求下列函數(shù)的定義域:①y=(
1
2
)
1
x
y=
log0.5(4x-3)

(2)解關(guān)于x的不等式:①a2x-7>a4x-1 logx
3
4
<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(θ)=
3
sinθ+cosθ,其中θ的頂點與坐標(biāo)原點重合,始邊與x軸非負半軸重合,終邊經(jīng)過點P(x,y)且0≤θ≤π.若點P的坐標(biāo)為(
1
2
,
3
2
),則f(θ)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡下列各式的(式中字母均為正數(shù))
(1)
b3
a
a6
b6
;
(2)4x
1
4
(-3x
1
4
y
-
1
3
)÷(-6x
-
1
2
y
-
2
3
)
(結(jié)果為分?jǐn)?shù)指數(shù)冪).

查看答案和解析>>

同步練習(xí)冊答案