已知函數(shù)f(x)=sin(2x+a)為奇函數(shù),則a為
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意和奇函數(shù)的結(jié)論:f(0)=0列出方程,再由正弦函數(shù)值求出角a的值.
解答: 解:∵函數(shù)f(x)=sin(2x+a)為奇函數(shù),
∴f(0)=sina=0,則a=kπ,k∈Z,
故答案為:kπ,k∈Z.
點(diǎn)評(píng):本題考查了奇函數(shù)的結(jié)論:f(0)=0靈活應(yīng)用,以及特殊角的正弦函數(shù)值的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為e=
2
2
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)右焦點(diǎn)F作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問(wèn)M、G、N、H四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為公差不為零的等差數(shù)列,首項(xiàng)a1=a,{an}的部分項(xiàng)ak1、ak2、…、akn恰為等比數(shù)列,且k1=1,k2=5,k3=17.
(1)求數(shù)列{an}的通項(xiàng)公式an(用a表示);
(2)設(shè)數(shù)列{kn}的前n項(xiàng)和為Sn,求證:
1
S1
+
1
S2
+…+
1
Sn
3
2
 
 
(n是正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=4y的焦點(diǎn)為F,點(diǎn)A(2,0),射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)N,則|FM|:|MN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐的各棱長(zhǎng)均為4cm,則它的全面積等于
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若奇函數(shù)f(x)=sinx+c的定義域?yàn)閇a,b],則a+b+c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx(a≠0)是增函數(shù),g(x)=f(x+x0)-f(x0)且對(duì)任意x0≥-
1
2
,g(x)都不是奇函數(shù),則M=
3a+2b+c
2b-3a
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y之間具有線性相關(guān)關(guān)系,其回歸方程為
y
=-3+bx,若
10
i=1
xi
=17,
10
i=1
yi=4
,則b的值為(  )
A、2B、1C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b,且ab=1,則
a2+b2
a-b
的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案