已知函數(shù)(m為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點坐標和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請說明理由.
(1) 1 ;(2)是,(1,e);單調(diào)減區(qū)間(0,+∞).
解析試題分析:(1)求導數(shù),轉(zhuǎn)化為分式不等式,最后根據(jù)不等式的基本性質(zhì)求解即可.(2)利用導數(shù)的幾何意義,求過(1,e)的切線即可驗證.
試題解析:由,得,∞),
=,
所以2-m=1,解得m=1.
(2)由(1)得,得,令h(x)=,則=,
當時,>0,當∞)時,<0,所以h(x)max=h(1)=0.
又因為ex>0,所以可得當∞)時,恒成立.故當∞)時,函數(shù)單調(diào)遞減.
因為且,所以曲線在(1,e)點出的切線方程為y-e=0(x-1),即y=e.
所以直線y=e是曲線f(x)的切線,切點坐標(1,e),且在∞)上單調(diào)遞減.
考點:1.求導;2.導數(shù)的幾何意義;3.導數(shù)性質(zhì)的應用.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,其中為常數(shù),,函數(shù)和的圖像在它們與坐標軸交點處的切線分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對于函數(shù)和公共定義域內(nèi)的任意實數(shù),有;
(3)若存在使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)
(Ⅰ)的圖象關(guān)于原點對稱,當時,的極小值為,求的解析式。
(Ⅱ)若,是上的單調(diào)函數(shù),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(是常數(shù))在處的切線方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,且在點(1,)處的切線方程為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù),若方程有且僅有四個解,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當時,若,存在,使,求實數(shù)的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若函數(shù)的圖象與直線為常數(shù))相切,并且切點的橫坐標依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點是圖象的對稱中心,且,求點A的坐標
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com