已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較與的大小,并說明理由.
(Ⅰ);(Ⅱ)略;(Ⅲ)<.
【解析】
試題分析:(Ⅰ)利用導(dǎo)數(shù)求解單調(diào)性,把恒成立轉(zhuǎn)化為最值;(Ⅱ)可用數(shù)學(xué)歸納法來證明;(Ⅲ)通過放縮法來解決與的大小比較問題.
試題解析:(Ⅰ) ∵f(1)=a-b=0 ∴a=b
∴
∴
要使函數(shù)在其定義域上為單調(diào)函數(shù),則在定義域(0,+∞)內(nèi)恒大于等于0或恒小于等于0,
當(dāng)a=0時,在(0,+∞)內(nèi)恒成立;
當(dāng)a>0時, 恒成立,則∴
當(dāng)a<0時, 恒成立
∴a的取值范圍是: 5分
(Ⅱ) ∴a=1 則:
于是
用數(shù)學(xué)歸納法證明如下:
當(dāng)n=1時,,不等式成立;
假設(shè)當(dāng)n=k時,不等式成立,即也成立,
當(dāng)n=k+1時,
所以當(dāng)n=k+1時不等式成立,
綜上得對所有時,都有 10分
(Ⅲ)由(2)得
于是
所以 ,
累稱得:則
所以 13分
考點(diǎn):利用導(dǎo)數(shù)處理單調(diào)性,數(shù)列中的數(shù)學(xué)歸納法、放縮法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
x |
1 |
2 |
x1+x2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年廣東省華南師大附中高三綜合測試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com